Not enough data to create a plot.
Try a different view from the menu above.
Wasi, Azmine Toushik
Ink and Individuality: Crafting a Personalised Narrative in the Age of LLMs
Wasi, Azmine Toushik, Islam, Raima, Islam, Mst Rafia
Individuality and personalization comprise the distinctive characteristics that make each writer unique and influence their words in order to effectively engage readers while conveying authenticity. However, our growing reliance on LLM-based writing assistants risks compromising our creativity and individuality over time. We often overlook the negative impacts of this trend on our creativity and uniqueness, despite the possible consequences. This study investigates these concerns by performing a brief survey to explore different perspectives and concepts, as well as trying to understand people's viewpoints, in conjunction with past studies in the area. Addressing these issues is essential for improving human-computer interaction systems and enhancing writing assistants for personalization and individuality.
LLMs as Writing Assistants: Exploring Perspectives on Sense of Ownership and Reasoning
Wasi, Azmine Toushik, Islam, Mst Rafia, Islam, Raima
Sense of ownership in writing confines our investment of thoughts, time, and contribution, leading to attachment to the output. However, using writing assistants introduces a mental dilemma, as some content isn't directly our creation. For instance, we tend to credit Large Language Models (LLMs) more in creative tasks, even though all tasks are equal for them. Additionally, while we may not claim complete ownership of LLM-generated content, we freely claim authorship. We conduct a short survey to examine these issues and understand underlying cognitive processes in order to gain a better knowledge of human-computer interaction in writing and improve writing aid systems.
CADGL: Context-Aware Deep Graph Learning for Predicting Drug-Drug Interactions
Wasi, Azmine Toushik, Rafi, Taki Hasan, Islam, Raima, Karlo, Serbetar, Chae, Dong-Kyu
Examining Drug-Drug Interactions (DDIs) is a pivotal element in the process of drug development. DDIs occur when one drug's properties are affected by the inclusion of other drugs. Detecting favorable DDIs has the potential to pave the way for creating and advancing innovative medications applicable in practical settings. However, existing DDI prediction models continue to face challenges related to generalization in extreme cases, robust feature extraction, and real-life application possibilities. We aim to address these challenges by leveraging the effectiveness of context-aware deep graph learning by introducing a novel framework named CADGL. Based on a customized variational graph autoencoder (VGAE), we capture critical structural and physio-chemical information using two context preprocessors for feature extraction from two different perspectives: local neighborhood and molecular context, in a heterogeneous graphical structure. Our customized VGAE consists of a graph encoder, a latent information encoder, and an MLP decoder. CADGL surpasses other state-of-the-art DDI prediction models, excelling in predicting clinically valuable novel DDIs, supported by rigorous case studies.
When SMILES have Language: Drug Classification using Text Classification Methods on Drug SMILES Strings
Wasi, Azmine Toushik, Karlo, Šerbetar, Islam, Raima, Rafi, Taki Hasan, Chae, Dong-Kyu
Complex chemical structures, like drugs, are usually defined by SMILES strings as a sequence of molecules and bonds. These SMILES strings are used in different complex machine learning-based drug-related research and representation works. Escaping from complex representation, in this work, we pose a single question: What if we treat drug SMILES as conventional sentences and engage in text classification for drug classification? The study explores the notion of viewing each atom and bond as sentence components, employing basic NLP methods to categorize drug types, proving that complex problems can also be solved with simpler perspectives. Classifying drug types plays a pivotal role in drug discovery research, aiding in the categorization of established drugs and enhancing our understanding of the distinctive features of newly identified or synthesized drugs.
Neural Control System for Continuous Glucose Monitoring and Maintenance
Wasi, Azmine Toushik
Precise glucose level monitoring is critical for people with diabetes to avoid serious complications. While there are several methods for continuous glucose level monitoring, research on maintenance devices is limited. To mitigate the gap, we provide a novel neural control system for continuous glucose monitoring and management that uses differential predictive control. Our approach, led by a sophisticated neural policy and differentiable modeling, constantly adjusts insulin supply in real-time, thereby improving glucose level optimization in the body. This end-to-end method maximizes efficiency, providing personalized care and improved health outcomes, as confirmed by empirical evidence.
SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks
Wasi, Azmine Toushik, Islam, MD Shafikul, Akib, Adipto Raihan
Graph Neural Networks (GNNs) have gained traction across different domains such as transportation, bio-informatics, language processing, and computer vision. However, there is a noticeable absence of research on applying GNNs to supply chain networks. Supply chain networks are inherently graph-like in structure, making them prime candidates for applying GNN methodologies. This opens up a world of possibilities for optimizing, predicting, and solving even the most complex supply chain problems. A major setback in this approach lies in the absence of real-world benchmark datasets to facilitate the research and resolution of supply chain problems using GNNs. To address the issue, we present a real-world benchmark dataset for temporal tasks, obtained from one of the leading FMCG companies in Bangladesh, focusing on supply chain planning for production purposes. The dataset includes temporal data as node features to enable sales predictions, production planning, and the identification of factory issues. By utilizing this dataset, researchers can employ GNNs to address numerous supply chain problems, thereby advancing the field of supply chain analytics and planning. Source: https://github.com/CIOL-SUST/SupplyGraph
Explainable Identification of Hate Speech towards Islam using Graph Neural Networks
Wasi, Azmine Toushik
Islamophobic language is a prevalent challenge on online social interaction platforms. Identifying and eliminating such hatred is a crucial step towards a future of harmony and peace. This study presents a novel paradigm for identifying and explaining hate speech towards Islam using graph neural networks. Utilizing the intrinsic ability of graph neural networks to find, extract, and use relationships across disparate data points, our model consistently achieves outstanding performance while offering explanations for the underlying correlations and causation.
ML Algorithm Synthesizing Domain Knowledge for Fungal Spores Concentration Prediction
Syed, Md Asif Bin, Wasi, Azmine Toushik, Ahmed, Imtiaz
The pulp and paper manufacturing industry requires precise quality control to ensure pure, contaminant-free end products suitable for various applications. Fungal spore concentration is a crucial metric that affects paper usability, and current testing methods are labor-intensive with delayed results, hindering real-time control strategies. To address this, a machine learning algorithm utilizing time-series data and domain knowledge was proposed. The optimal model employed Ridge Regression achieving an MSE of 2.90 on training and validation data. This approach could lead to significant improvements in efficiency and sustainability by providing real-time predictions for fungal spore concentrations. This paper showcases a promising method for real-time fungal spore concentration prediction, enabling stringent quality control measures in the pulp-and-paper industry.
ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning
Wasi, Azmine Toushik, Šerbetar, Karlo, Islam, Raima, Rafi, Taki Hasan, Chae, Dong-Kyu
In this paper, we introduce a framework ARBEx, a novel attentive feature extraction framework driven by Vision Transformer with reliability balancing to cope against poor class distributions, bias, and uncertainty in the facial expression learning (FEL) task. We reinforce several data pre-processing and refinement methods along with a window-based cross-attention ViT to squeeze the best of the data. We also employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions with reliability balancing, which is a strategy that leverages anchor points, attention scores, and confidence values to enhance the resilience of label predictions. To ensure correct label classification and improve the models' discriminative power, we introduce anchor loss, which encourages large margins between anchor points. Additionally, the multi-head self-attention mechanism, which is also trainable, plays an integral role in identifying accurate labels. This approach provides critical elements for improving the reliability of predictions and has a substantial positive effect on final prediction capabilities. Our adaptive model can be integrated with any deep neural network to forestall challenges in various recognition tasks. Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.