Wang, Ziqi
Federated Incomplete Multi-View Clustering with Heterogeneous Graph Neural Networks
Yan, Xueming, Wang, Ziqi, Jin, Yaochu
Federated multi-view clustering offers the potential to develop a global clustering model using data distributed across multiple devices. However, current methods face challenges due to the absence of label information and the paramount importance of data privacy. A significant issue is the feature heterogeneity across multi-view data, which complicates the effective mining of complementary clustering information. Additionally, the inherent incompleteness of multi-view data in a distributed setting can further complicate the clustering process. To address these challenges, we introduce a federated incomplete multi-view clustering framework with heterogeneous graph neural networks (FIM-GNNs). In the proposed FIM-GNNs, autoencoders built on heterogeneous graph neural network models are employed for feature extraction of multi-view data at each client site. At the server level, heterogeneous features from overlapping samples of each client are aggregated into a global feature representation. Global pseudo-labels are generated at the server to enhance the handling of incomplete view data, where these labels serve as a guide for integrating and refining the clustering process across different data views. Comprehensive experiments have been conducted on public benchmark datasets to verify the performance of the proposed FIM-GNNs in comparison with state-of-the-art algorithms.
FlexLoc: Conditional Neural Networks for Zero-Shot Sensor Perspective Invariance in Object Localization with Distributed Multimodal Sensors
Wu, Jason, Wang, Ziqi, Ouyang, Xiaomin, Jeong, Ho Lyun, Samplawski, Colin, Kaplan, Lance, Marlin, Benjamin, Srivastava, Mani
Localization is a critical technology for various applications ranging from navigation and surveillance to assisted living. Localization systems typically fuse information from sensors viewing the scene from different perspectives to estimate the target location while also employing multiple modalities for enhanced robustness and accuracy. Recently, such systems have employed end-to-end deep neural models trained on large datasets due to their superior performance and ability to handle data from diverse sensor modalities. However, such neural models are often trained on data collected from a particular set of sensor poses (i.e., locations and orientations). During real-world deployments, slight deviations from these sensor poses can result in extreme inaccuracies. To address this challenge, we introduce FlexLoc, which employs conditional neural networks to inject node perspective information to adapt the localization pipeline. Specifically, a small subset of model weights are derived from node poses at run time, enabling accurate generalization to unseen perspectives with minimal additional overhead. Our evaluations on a multimodal, multiview indoor tracking dataset showcase that FlexLoc improves the localization accuracy by almost 50% in the zero-shot case (no calibration data available) compared to the baselines. The source code of FlexLoc is available at https://github.com/nesl/FlexLoc.
Weak-to-Strong Extrapolation Expedites Alignment
Zheng, Chujie, Wang, Ziqi, Ji, Heng, Huang, Minlie, Peng, Nanyun
The open-source community is experiencing a surge in the release of large language models (LLMs) that are trained to follow instructions and align with human preference. However, further training to improve them still requires expensive computational resources and data annotations. Is it possible to bypass additional training and cost-effectively acquire better-aligned models? Inspired by the literature on model interpolation, we propose a simple method called ExPO to boost LLMs' alignment with human preference. Utilizing a model that has undergone alignment training (e.g., via DPO or RLHF) and its initial SFT checkpoint, ExPO directly obtains a better-aligned model by extrapolating from the weights of the initial and the aligned models, which implicitly optimizes the alignment objective via first-order approximation. Through experiments with twelve open-source LLMs on HuggingFace, we demonstrate that ExPO consistently improves off-the-shelf DPO/RLHF models, as evaluated on the mainstream LLM benchmarks AlpacaEval 2.0 and MT-Bench. Moreover, ExPO exhibits remarkable scalability across various model sizes (from 1.8B to 70B) and capabilities. Through controlled experiments and further empirical analyses, we shed light on the essence of ExPO amplifying the reward signal learned during alignment training. Our work demonstrates the efficacy of model extrapolation in expediting the alignment of LLMs with human preference, suggesting a promising direction for future research.
Measuring Diversity of Game Scenarios
Li, Yuchen, Wang, Ziqi, Zhang, Qingquan, Liu, Jialin
This survey comprehensively reviews the multi-dimensionality of game scenario diversity, spotlighting the innovative use of procedural content generation and other fields as cornerstones for enriching player experiences through diverse game scenarios. By traversing a wide array of disciplines, from affective modeling and multi-agent systems to psychological studies, our research underscores the importance of diverse game scenarios in gameplay and education. Through a taxonomy of diversity metrics and evaluation methods, we aim to bridge the current gaps in literature and practice, offering insights into effective strategies for measuring and integrating diversity in game scenarios. Our analysis highlights the necessity for a unified taxonomy to aid developers and researchers in crafting more engaging and varied game worlds. This survey not only charts a path for future research in diverse game scenarios but also serves as a handbook for industry practitioners seeking to leverage diversity as a key component of game design and development.
FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
Song, Yongcun, Wang, Ziqi, Zuazua, Enrique
Federated learning (FL) is a promising framework for learning from distributed data while maintaining privacy. The development of efficient FL algorithms encounters various challenges, including heterogeneous data and systems, limited communication capacities, and constrained local computational resources. Recently developed FedADMM methods show great resilience to both data and system heterogeneity. However, they still suffer from performance deterioration if the hyperparameters are not carefully tuned. To address this issue, we propose an inexact and self-adaptive FedADMM algorithm, termed FedADMM-InSa. First, we design an inexactness criterion for the clients' local updates to eliminate the need for empirically setting the local training accuracy. This inexactness criterion can be assessed by each client independently based on its unique condition, thereby reducing the local computational cost and mitigating the undesirable straggle effect. The convergence of the resulting inexact ADMM is proved under the assumption of strongly convex loss functions. Additionally, we present a self-adaptive scheme that dynamically adjusts each client's penalty parameter, enhancing algorithm robustness by mitigating the need for empirical penalty parameter choices for each client. Extensive numerical experiments on both synthetic and real-world datasets are conducted. As validated by some numerical tests, our proposed algorithm can reduce the clients' local computational load significantly and also accelerate the learning process compared to the vanilla FedADMM.
GDTM: An Indoor Geospatial Tracking Dataset with Distributed Multimodal Sensors
Jeong, Ho Lyun, Wang, Ziqi, Samplawski, Colin, Wu, Jason, Fang, Shiwei, Kaplan, Lance M., Ganesan, Deepak, Marlin, Benjamin, Srivastava, Mani
Constantly locating moving objects, i.e., geospatial tracking, is essential for autonomous building infrastructure. Accurate and robust geospatial tracking often leverages multimodal sensor fusion algorithms, which require large datasets with time-aligned, synchronized data from various sensor types. However, such datasets are not readily available. Hence, we propose GDTM, a nine-hour dataset for multimodal object tracking with distributed multimodal sensors and reconfigurable sensor node placements. Our dataset enables the exploration of several research problems, such as optimizing architectures for processing multimodal data, and investigating models' robustness to adverse sensing conditions and sensor placement variances. A GitHub repository containing the code, sample data, and checkpoints of this work is available at https://github.com/nesl/GDTM.
Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis
Zhai, Wei, Qi, Hongzhi, Zhao, Qing, Li, Jianqiang, Wang, Ziqi, Wang, Han, Yang, Bing Xiang, Fu, Guanghui
In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there's a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model's applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We assessed our model's effectiveness across four public benchmarks, where it not only surpassed the performance of standard pre-trained models but also showed a inclination for making psychologically relevant predictions. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT.
Dimensionality reduction can be used as a surrogate model for high-dimensional forward uncertainty quantification
Kim, Jungho, Yi, Sang-ri, Wang, Ziqi
We introduce a method to construct a stochastic surrogate model from the results of dimensionality reduction in forward uncertainty quantification. The hypothesis is that the high-dimensional input augmented by the output of a computational model admits a low-dimensional representation. This assumption can be met by numerous uncertainty quantification applications with physics-based computational models. The proposed approach differs from a sequential application of dimensionality reduction followed by surrogate modeling, as we "extract" a surrogate model from the results of dimensionality reduction in the input-output space. This feature becomes desirable when the input space is genuinely high-dimensional. The proposed method also diverges from the Probabilistic Learning on Manifold, as a reconstruction mapping from the feature space to the input-output space is circumvented. The final product of the proposed method is a stochastic simulator that propagates a deterministic input into a stochastic output, preserving the convenience of a sequential "dimensionality reduction + Gaussian process regression" approach while overcoming some of its limitations. The proposed method is demonstrated through two uncertainty quantification problems characterized by high-dimensional input uncertainties.
Explaining Emergent In-Context Learning as Kernel Regression
Han, Chi, Wang, Ziqi, Zhao, Han, Ji, Heng
Large language models (LLMs) have initiated a paradigm shift in transfer learning. In contrast to the classic pretraining-then-finetuning procedure, in order to use LLMs for downstream prediction tasks, one only needs to provide a few demonstrations, known as in-context examples, without adding more or updating existing model parameters. This in-context learning (ICL) capability of LLMs is intriguing, and it is not yet fully understood how pretrained LLMs acquire such capabilities. In this paper, we investigate the reason why a transformer-based language model can accomplish in-context learning after pre-training on a general language corpus by proposing one hypothesis that LLMs can simulate kernel regression with internal representations when faced with in-context examples. More concretely, we first prove that Bayesian inference on in-context prompts can be asymptotically understood as kernel regression $\hat y = \sum_i y_i K(x, x_i)/\sum_i K(x, x_i)$ as the number of in-context demonstrations grows. Then, we empirically investigate the in-context behaviors of language models. We find that during ICL, the attention and hidden features in LLMs match the behaviors of a kernel regression. Finally, our theory provides insights into multiple phenomena observed in the ICL field: why retrieving demonstrative samples similar to test samples can help, why ICL performance is sensitive to the output formats, and why ICL accuracy benefits from selecting in-distribution and representative samples.
Enable Language Models to Implicitly Learn Self-Improvement From Data
Wang, Ziqi, Hou, Le, Lu, Tianjian, Wu, Yuexin, Li, Yunxuan, Yu, Hongkun, Ji, Heng
Large Language Models (LLMs) have demonstrated remarkable capabilities in open-ended text generation tasks. However, the inherent open-ended nature of these tasks implies that there is always room for improvement in the quality of model responses. To address this challenge, various approaches have been proposed to enhance the performance of LLMs. There has been a growing focus on enabling LLMs to self-improve their response quality, thereby reducing the reliance on extensive human annotation efforts for collecting diverse and high-quality training data. Recently, prompting-based methods have been widely explored among self-improvement methods owing to their effectiveness, efficiency, and convenience. However, those methods usually require explicitly and thoroughly written rubrics as inputs to LLMs. It is expensive and challenging to manually derive and provide all necessary rubrics with a real-world complex goal for improvement (e.g., being more helpful and less harmful). To this end, we propose an ImPlicit Self-ImprovemenT (PIT) framework that implicitly learns the improvement goal from human preference data. PIT only requires preference data that are used to train reward models without extra human efforts. Specifically, we reformulate the training objective of reinforcement learning from human feedback (RLHF) -- instead of maximizing response quality for a given input, we maximize the quality gap of the response conditioned on a reference response. In this way, PIT is implicitly trained with the improvement goal of better aligning with human preferences. Experiments on two real-world datasets and one synthetic dataset show that our method significantly outperforms prompting-based methods.