Goto

Collaborating Authors

 Wang, Zihao


Persona-Aware Tips Generation

arXiv.org Artificial Intelligence

Tips, as a compacted and concise form of reviews, were paid less attention by researchers. In this paper, we investigate the task of tips generation by considering the `persona' information which captures the intrinsic language style of the users or the different characteristics of the product items. In order to exploit the persona information, we propose a framework based on adversarial variational auto-encoders (aVAE) for persona modeling from the historical tips and reviews of users and items. The latent variables from aVAE are regarded as persona embeddings. Besides representing persona using the latent embeddings, we design a persona memory for storing the persona related words for users and items. Pointer Network is used to retrieve persona wordings from the memory when generating tips. Moreover, the persona embeddings are used as latent factors by a rating prediction component to predict the sentiment of a user over an item. Finally, the persona embeddings and the sentiment information are incorporated into a recurrent neural networks based tips generation component. Extensive experimental results are reported and discussed to elaborate the peculiarities of our framework.


Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization

AAAI Conferences

We propose a new unsupervised sentence salience framework for Multi-Document Summarization (MDS), which can be divided into two components: latent semantic modeling and salience estimation. For latent semantic modeling, a neural generative model called Variational Auto-Encoders (VAEs) is employed to describe the observed sentences and the corresponding latent semantic representations. Neural variational inference is used for the posterior inference of the latent variables. For salience estimation, we propose an unsupervised data reconstruction framework, which jointly considers the reconstruction for latent semantic space and observed term vector space. Therefore, we can capture the salience of sentences from these two different and complementary vector spaces. Thereafter, the VAEs-based latent semantic model is integrated into the sentence salience estimation component in a unified fashion, and the whole framework can be trained jointly by back-propagation via multi-task learning. Experimental results on the benchmark datasets DUC and TAC show that our framework achieves better performance than the state-of-the-art models.