Goto

Collaborating Authors

 Wang, Zihao


SaMoye: Zero-shot Singing Voice Conversion Based on Feature Disentanglement and Synthesis

arXiv.org Artificial Intelligence

Singing voice conversion (SVC) aims to convert a singer's voice in a given music piece to another singer while keeping the original content. We propose an end-to-end feature disentanglement-based model, which we named SaMoye, to enable zero-shot many-to-many singing voice conversion. SaMoye disentangles the features of the singing voice into content features, timbre features, and pitch features respectively. The content features are enhanced using a GPT-based model to perform cross-prediction with the phoneme of the lyrics. SaMoye can generate the music with converted voice by replacing the timbre features with the target singer. We also establish an unparalleled large-scale dataset to guarantee zero-shot performance. The dataset consists of 1500k pure singing vocal clips containing at least 10,000 singers.


MuDiT & MuSiT: Alignment with Colloquial Expression in Description-to-Song Generation

arXiv.org Artificial Intelligence

Amid the rising intersection of generative AI and human artistic processes, this study probes the critical yet less-explored terrain of alignment in human-centric automatic song composition. We propose a novel task of Colloquial Description-to-Song Generation, which focuses on aligning the generated content with colloquial human expressions. This task is aimed at bridging the gap between colloquial language understanding and auditory expression within an AI model, with the ultimate goal of creating songs that accurately satisfy human auditory expectations and structurally align with musical norms. Current datasets are limited due to their narrow descriptive scope, semantic gaps and inaccuracies. To overcome data scarcity in this domain, we present the Caichong Music Dataset (CaiMD). CaiMD is manually annotated by both professional musicians and amateurs, offering diverse perspectives and a comprehensive understanding of colloquial descriptions. Unlike existing datasets pre-set with expert annotations or auto-generated ones with inherent biases, CaiMD caters more sufficiently to our purpose of aligning AI-generated music with widespread user-desired results. Moreover, we propose an innovative single-stage framework called MuDiT/MuSiT for enabling effective human-machine alignment in song creation. This framework not only achieves cross-modal comprehension between colloquial language and auditory music perceptions but also ensures generated songs align with user-desired results. MuDiT/MuSiT employs one DiT/SiT model for end-to-end generation of musical components like melody, harmony, rhythm, vocals, and instrumentation. The approach ensures harmonious sonic cohesiveness amongst all generated musical components, facilitating better resonance with human auditory expectations.


LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing

arXiv.org Artificial Intelligence

This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.


CLoG: Benchmarking Continual Learning of Image Generation Models

arXiv.org Artificial Intelligence

Continual Learning (CL) poses a significant challenge in Artificial Intelligence, aiming to mirror the human ability to incrementally acquire knowledge and skills. While extensive research has focused on CL within the context of classification tasks, the advent of increasingly powerful generative models necessitates the exploration of Continual Learning of Generative models (CLoG). This paper advocates for shifting the research focus from classification-based CL to CLoG. We systematically identify the unique challenges presented by CLoG compared to traditional classification-based CL. We adapt three types of existing CL methodologies, replay-based, regularization-based, and parameter-isolation-based methods to generative tasks and introduce comprehensive benchmarks for CLoG that feature great diversity and broad task coverage. Our benchmarks and results yield intriguing insights that can be valuable for developing future CLoG methods. Additionally, we will release a codebase designed to facilitate easy benchmarking and experimentation in CLoG publicly at https://github.com/linhaowei1/CLoG. We believe that shifting the research focus to CLoG will benefit the continual learning community and illuminate the path for next-generation AI-generated content (AIGC) in a lifelong learning paradigm.


Foundation Model for Chemical Process Modeling: Meta-Learning with Physics-Informed Adaptation

arXiv.org Artificial Intelligence

In this work, we introduce a novel application of foundation models in the domain of nonlinear chemical process modeling. Given the challenges of obtaining accurate first-principles models for real-world chemical processes and the inefficiency of rebuilding and retraining models for new chemical processes, we pose a pivotal question: What if we could develop a single, universal neural network (i.e., foundation model) capable of rapidly adapting to modeling any new chemical process? To address this question, we propose a meta-learning-based approach using Reptile to construct the foundation model, followed by physics-informed adaptation to fine-tune it to new modeling tasks using only a few data samples. To assess the effectiveness of our methodology, we construct a foundation model for various chemical reactions in three classical generic reactors, including continuous stirred tank reactors (CSTRs), batch reactors (BRs), and plug flow reactors (PFRs). Our approach outperforms conventional methods such as data-driven learning, physics-informed learning, transfer learning, and pure meta-learning in a few-shot setting. Furthermore, our method achieves rapid adaptation to new CSTRs, BRs, and PFRs using only a few data samples from the designated tasks. Source code is available at https://github.com/killingbear999/chemical-process-foundation-model.


Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering

arXiv.org Artificial Intelligence

To address the issue of insufficient knowledge and the tendency to generate hallucination in Large Language Models (LLMs), numerous studies have endeavored to integrate LLMs with Knowledge Graphs (KGs). However, all these methods are evaluated on conventional Knowledge Graph Question Answering (KGQA) with complete KGs, where the factual triples involved in each question are entirely covered by the given KG. In this situation, LLM mainly acts as an agent to find answer entities by exploring the KG, rather than effectively integrating internal and external knowledge sources. However, in real-world scenarios, KGs are often incomplete to cover all the knowledge required to answer questions. To simulate real-world scenarios and evaluate the ability of LLMs to integrate internal and external knowledge, in this paper, we propose leveraging LLMs for QA under Incomplete Knowledge Graph (IKGQA), where the given KG doesn't include all the factual triples involved in each question. To handle IKGQA, we propose a training-free method called Generate-on-Graph (GoG) that can generate new factual triples while exploring on KGs. Specifically, we propose a selecting-generating-answering framework, which not only treat the LLM as an agent to explore on KGs, but also treat it as a KG to generate new facts based on the explored subgraph and its inherent knowledge. Experimental results on two datasets demonstrate that our GoG can solve IKGQA to a certain extent, while almost all previous methods cannot perform well on IKGQA.


Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their widespread application is hindered by the resource-intensive decoding process. To address this challenge, current approaches have incorporated additional decoding heads to enable parallel prediction of multiple subsequent tokens, thereby achieving inference acceleration. Nevertheless, the accuracy of these decoding heads falls short of the auto-regressive decoding approach. In light of these limitations, we propose Chimera, a novel framework specifically designed for speculative sampling. Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words. To ensure both accuracy and efficiency, we present two strategies within the lightweight draft model. Firstly, we focus on capturing short-range dependencies at the bottom layer. Secondly, we leverage the readily available representations from the original LLM.Through empirical evaluation on the Vicuna and LlaMA-2 series, Chimera demonstrates impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach. This highlights the potential of our proposed framework in significantly improving the efficiency of large language models during the decoding process.


Fast Gradient Computation for Gromov-Wasserstein Distance

arXiv.org Artificial Intelligence

The Gromov-Wasserstein distance is a notable extension of optimal transport. In contrast to the classic Wasserstein distance, it solves a quadratic assignment problem that minimizes the pair-wise distance distortion under the transportation of distributions and thus could apply to distributions in different spaces. These properties make Gromov-Wasserstein widely applicable to many fields, such as computer graphics and machine learning. However, the computation of the Gromov-Wasserstein distance and transport plan is expensive. The well-known Entropic Gromov-Wasserstein approach has a cubic complexity since the matrix multiplication operations need to be repeated in computing the gradient of Gromov-Wasserstein loss. This becomes a key bottleneck of the method. Currently, existing methods accelerate the computation focus on sampling and approximation, which leads to low accuracy or incomplete transport plan. In this work, we propose a novel method to accelerate accurate gradient computation by dynamic programming techniques, reducing the complexity from cubic to quadratic. In this way, the original computational bottleneck is broken and the new entropic solution can be obtained with total quadratic time, which is almost optimal complexity. Furthermore, it can be extended to some variants easily. Extensive experiments validate the efficiency and effectiveness of our method.


Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs

arXiv.org Artificial Intelligence

Despite the superb performance in many tasks, large language models (LLMs) bear the risk of generating hallucination or even wrong answers when confronted with tasks that demand the accuracy of knowledge. The issue becomes even more noticeable when addressing logic queries that require multiple logic reasoning steps. On the other hand, knowledge graph (KG) based question answering methods are capable of accurately identifying the correct answers with the help of knowledge graph, yet its accuracy could quickly deteriorate when the knowledge graph itself is sparse and incomplete. It remains a critical challenge on how to integrate knowledge graph reasoning with LLMs in a mutually beneficial way so as to mitigate both the hallucination problem of LLMs as well as the incompleteness issue of knowledge graphs. In this paper, we propose 'Logic-Query-of-Thoughts' (LGOT) which is the first of its kind to combine LLMs with knowledge graph based logic query reasoning. LGOT seamlessly combines knowledge graph reasoning and LLMs, effectively breaking down complex logic queries into easy to answer subquestions. Through the utilization of both knowledge graph reasoning and LLMs, it successfully derives answers for each subquestion. By aggregating these results and selecting the highest quality candidate answers for each step, LGOT achieves accurate results to complex questions. Our experimental findings demonstrate substantial performance enhancements, with up to 20% improvement over ChatGPT.


Diffusion based Zero-shot Medical Image-to-Image Translation for Cross Modality Segmentation

arXiv.org Artificial Intelligence

Cross-modality image segmentation aims to segment the target modalities using a method designed in the source modality. Deep generative models can translate the target modality images into the source modality, thus enabling cross-modality segmentation. However, a vast body of existing cross-modality image translation methods relies on supervised learning. In this work, we aim to address the challenge of zero-shot learning-based image translation tasks (extreme scenarios in the target modality is unseen in the training phase). To leverage generative learning for zero-shot cross-modality image segmentation, we propose a novel unsupervised image translation method. The framework learns to translate the unseen source image to the target modality for image segmentation by leveraging the inherent statistical consistency between different modalities for diffusion guidance. Our framework captures identical cross-modality features in the statistical domain, offering diffusion guidance without relying on direct mappings between the source and target domains. This advantage allows our method to adapt to changing source domains without the need for retraining, making it highly practical when sufficient labeled source domain data is not available. The proposed framework is validated in zero-shot cross-modality image segmentation tasks through empirical comparisons with influential generative models, including adversarial-based and diffusion-based models.