Wang, Zihan
ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools
GLM, Team, :, null, Zeng, Aohan, Xu, Bin, Wang, Bowen, Zhang, Chenhui, Yin, Da, Rojas, Diego, Feng, Guanyu, Zhao, Hanlin, Lai, Hanyu, Yu, Hao, Wang, Hongning, Sun, Jiadai, Zhang, Jiajie, Cheng, Jiale, Gui, Jiayi, Tang, Jie, Zhang, Jing, Li, Juanzi, Zhao, Lei, Wu, Lindong, Zhong, Lucen, Liu, Mingdao, Huang, Minlie, Zhang, Peng, Zheng, Qinkai, Lu, Rui, Duan, Shuaiqi, Zhang, Shudan, Cao, Shulin, Yang, Shuxun, Tam, Weng Lam, Zhao, Wenyi, Liu, Xiao, Xia, Xiao, Zhang, Xiaohan, Gu, Xiaotao, Lv, Xin, Liu, Xinghan, Liu, Xinyi, Yang, Xinyue, Song, Xixuan, Zhang, Xunkai, An, Yifan, Xu, Yifan, Niu, Yilin, Yang, Yuantao, Li, Yueyan, Bai, Yushi, Dong, Yuxiao, Qi, Zehan, Wang, Zhaoyu, Yang, Zhen, Du, Zhengxiao, Hou, Zhenyu, Wang, Zihan
We introduce ChatGLM, an evolving family of large language models that we have been developing over time. This report primarily focuses on the GLM-4 language series, which includes GLM-4, GLM-4-Air, and GLM-4-9B. They represent our most capable models that are trained with all the insights and lessons gained from the preceding three generations of ChatGLM. To date, the GLM-4 models are pre-trained on ten trillions of tokens mostly in Chinese and English, along with a small set of corpus from 24 languages, and aligned primarily for Chinese and English usage. The high-quality alignment is achieved via a multi-stage post-training process, which involves supervised fine-tuning and learning from human feedback. Evaluations show that GLM-4 1) closely rivals or outperforms GPT-4 in terms of general metrics such as MMLU, GSM8K, MATH, BBH, GPQA, and HumanEval, 2) gets close to GPT-4-Turbo in instruction following as measured by IFEval, 3) matches GPT-4 Turbo (128K) and Claude 3 for long context tasks, and 4) outperforms GPT-4 in Chinese alignments as measured by AlignBench. The GLM-4 All Tools model is further aligned to understand user intent and autonomously decide when and which tool(s) touse -- including web browser, Python interpreter, text-to-image model, and user-defined functions -- to effectively complete complex tasks. In practical applications, it matches and even surpasses GPT-4 All Tools in tasks like accessing online information via web browsing and solving math problems using Python interpreter. Over the course, we have open-sourced a series of models, including ChatGLM-6B (three generations), GLM-4-9B (128K, 1M), GLM-4V-9B, WebGLM, and CodeGeeX, attracting over 10 million downloads on Hugging face in the year 2023 alone. The open models can be accessed through https://github.com/THUDM and https://huggingface.co/THUDM.
When Vision Meets Touch: A Contemporary Review for Visuotactile Sensors from the Signal Processing Perspective
Li, Shoujie, Wang, Zihan, Wu, Changsheng, Li, Xiang, Luo, Shan, Fang, Bin, Sun, Fuchun, Zhang, Xiao-Ping, Ding, Wenbo
Tactile sensors, which provide information about the physical properties of objects, are an essential component of robotic systems. The visuotactile sensing technology with the merits of high resolution and low cost has facilitated the development of robotics from environment exploration to dexterous operation. Over the years, several reviews on visuotactile sensors for robots have been presented, but few of them discussed the significance of signal processing methods to visuotactile sensors. Apart from ingenious hardware design, the full potential of the sensory system toward designated tasks can only be released with the appropriate signal processing methods. Therefore, this paper provides a comprehensive review of visuotactile sensors from the perspective of signal processing methods and outlooks possible future research directions for visuotactile sensors.
Text Grafting: Near-Distribution Weak Supervision for Minority Classes in Text Classification
Peng, Letian, Gu, Yi, Dong, Chengyu, Wang, Zihan, Shang, Jingbo
For extremely weak-supervised text classification, pioneer research generates pseudo labels by mining texts similar to the class names from the raw corpus, which may end up with very limited or even no samples for the minority classes. Recent works have started to generate the relevant texts by prompting LLMs using the class names or definitions; however, there is a high risk that LLMs cannot generate in-distribution (i.e., similar to the corpus where the text classifier will be applied) data, leading to ungeneralizable classifiers. In this paper, we combine the advantages of these two approaches and propose to bridge the gap via a novel framework, \emph{text grafting}, which aims to obtain clean and near-distribution weak supervision for minority classes. Specifically, we first use LLM-based logits to mine masked templates from the raw corpus, which have a high potential for data synthesis into the target minority class. Then, the templates are filled by state-of-the-art LLMs to synthesize near-distribution texts falling into minority classes. Text grafting shows significant improvement over direct mining or synthesis on minority classes. We also use analysis and case studies to comprehend the property of text grafting.
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
Fu, Chaoyou, Dai, Yuhan, Luo, Yongdong, Li, Lei, Ren, Shuhuai, Zhang, Renrui, Wang, Zihan, Zhou, Chenyu, Shen, Yunhang, Zhang, Mengdan, Chen, Peixian, Li, Yanwei, Lin, Shaohui, Zhao, Sirui, Li, Ke, Xu, Tong, Zheng, Xiawu, Chen, Enhong, Ji, Rongrong, Sun, Xing
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 254 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
Evaluating the Smooth Control of Attribute Intensity in Text Generation with LLMs
Zhou, Shang, Yao, Feng, Dong, Chengyu, Wang, Zihan, Shang, Jingbo
Controlling the attribute intensity of text generation is crucial across scenarios (e.g., writing conciseness, chatting emotion, and explanation clarity). The remarkable capabilities of large language models (LLMs) have revolutionized text generation, prompting us to explore such \emph{smooth control} of LLM generation. Specifically, we propose metrics to assess the range, calibration, and consistency of the generated text's attribute intensity in response to varying control values, as well as its relevance to the intended context. To quantify the attribute intensity and context relevance, we propose an effective evaluation framework leveraging the Elo rating system and GPT4, both renowned for their robust alignment with human judgment. We look into two viable training-free methods for achieving smooth control of LLMs: (1) Prompting with semantic shifters, and (2) Modifying internal model representations. The evaluations of these two methods are conducted on $5$ different attributes with various models. Our code and dataset can be obtained from \url{https://github.com/ShangDataLab/Smooth-Control}.
Forward-Backward Knowledge Distillation for Continual Clustering
Sadeghi, Mohammadreza, Wang, Zihan, Armanfard, Narges
Unsupervised Continual Learning (UCL) is a burgeoning field in machine learning, focusing on enabling neural networks to sequentially learn tasks without explicit label information. Catastrophic Forgetting (CF), where models forget previously learned tasks upon learning new ones, poses a significant challenge in continual learning, especially in UCL, where labeled information of data is not accessible. CF mitigation strategies, such as knowledge distillation and replay buffers, often face memory inefficiency and privacy issues. Although current research in UCL has endeavored to refine data representations and address CF in streaming data contexts, there is a noticeable lack of algorithms specifically designed for unsupervised clustering. To fill this gap, in this paper, we introduce the concept of Unsupervised Continual Clustering (UCC). We propose Forward-Backward Knowledge Distillation for unsupervised Continual Clustering (FBCC) to counteract CF within the context of UCC. FBCC employs a single continual learner (the ``teacher'') with a cluster projector, along with multiple student models, to address the CF issue. The proposed method consists of two phases: Forward Knowledge Distillation, where the teacher learns new clusters while retaining knowledge from previous tasks with guidance from specialized student models, and Backward Knowledge Distillation, where a student model mimics the teacher's behavior to retain task-specific knowledge, aiding the teacher in subsequent tasks. FBCC marks a pioneering approach to UCC, demonstrating enhanced performance and memory efficiency in clustering across various tasks, outperforming the application of clustering algorithms to the latent space of state-of-the-art UCL algorithms.
Is Mamba Effective for Time Series Forecasting?
Wang, Zihan, Kong, Fanheng, Feng, Shi, Wang, Ming, Yang, Xiaocui, Zhao, Han, Wang, Daling, Zhang, Yifei
In the realm of time series forecasting (TSF), it is imperative for models to adeptly discern and distill hidden patterns within historical time series data to forecast future states. Transformer-based models exhibit formidable efficacy in TSF, primarily attributed to their advantage in apprehending these patterns. However, the quadratic complexity of the Transformer leads to low computational efficiency and high costs, which somewhat hinders the deployment of the TSF model in real-world scenarios. Recently, Mamba, a selective state space model, has gained traction due to its ability to process dependencies in sequences while maintaining near-linear complexity. For TSF tasks, these characteristics enable Mamba to comprehend hidden patterns as the Transformer and reduce computational overhead compared to the Transformer. Therefore, we propose a Mamba-based model named Simple-Mamba (S-Mamba) for TSF. Specifically, we tokenize the time points of each variate autonomously via a linear layer. A bidirectional Mamba layer is utilized to extract inter-variate correlations and a Feed-Forward Network is set to learn temporal dependencies. Finally, the generation of forecast outcomes through a linear mapping layer. Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance. Furthermore, we conduct extensive experiments to explore Mamba's potential in TSF tasks. Our code is available at https://github.com/wzhwzhwzh0921/S-D-Mamba.
Tele-FLM Technical Report
Li, Xiang, Yao, Yiqun, Jiang, Xin, Fang, Xuezhi, Wang, Chao, Liu, Xinzhang, Wang, Zihan, Zhao, Yu, Wang, Xin, Huang, Yuyao, Song, Shuangyong, Li, Yongxiang, Zhang, Zheng, Zhao, Bo, Sun, Aixin, Wang, Yequan, He, Zhongjiang, Wang, Zhongyuan, Li, Xuelong, Huang, Tiejun
Large language models (LLMs) have showcased profound capabilities in language understanding and generation, facilitating a wide array of applications. However, there is a notable paucity of detailed, open-sourced methodologies on efficiently scaling LLMs beyond 50 billion parameters with minimum trial-and-error cost and computational resources. In this report, we introduce Tele-FLM (aka FLM-2), a 52B open-sourced multilingual large language model that features a stable, efficient pre-training paradigm and enhanced factual judgment capabilities. Tele-FLM demonstrates superior multilingual language modeling abilities, measured by BPB on textual corpus. Besides, in both English and Chinese foundation model evaluation, it is comparable to strong open-sourced models that involve larger pre-training FLOPs, such as Llama2-70B and DeepSeek-67B. In addition to the model weights, we share the core designs, engineering practices, and training details, which we expect to benefit both the academic and industrial communities.
Learn from Failure: Fine-Tuning LLMs with Trial-and-Error Data for Intuitionistic Propositional Logic Proving
An, Chenyang, Chen, Zhibo, Ye, Qihao, First, Emily, Peng, Letian, Zhang, Jiayun, Wang, Zihan, Lerner, Sorin, Shang, Jingbo
Recent advances in Automated Theorem Proving have shown the effectiveness of leveraging a (large) language model that generates tactics (i.e. proof steps) to search through proof states. The current model, while trained solely on successful proof paths, faces a discrepancy at the inference stage, as it must sample and try various tactics at each proof state until finding success, unlike its training which does not incorporate learning from failed attempts. Intuitively, a tactic that leads to a failed search path would indicate that similar tactics should receive less attention during the following trials. In this paper, we demonstrate the benefit of training models that additionally learn from failed search paths. Facing the lack of such trial-and-error data in existing open-source theorem-proving datasets, we curate a dataset on intuitionistic propositional logic theorems and formalize it in Lean, such that we can reliably check the correctness of proofs. We compare our model trained on relatively short trial-and-error information (TrialMaster) with models trained only on the correct paths and discover that the former solves more unseen theorems with lower trial searches.
ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline
Xu, Yifan, Liu, Xiao, Liu, Xinghan, Hou, Zhenyu, Li, Yueyan, Zhang, Xiaohan, Wang, Zihan, Zeng, Aohan, Du, Zhengxiao, Zhao, Wenyi, Tang, Jie, Dong, Yuxiao
Large language models (LLMs) have shown excellent mastering of human language, but still struggle in real-world applications that require mathematical problem-solving. While many strategies and datasets to enhance LLMs' mathematics are developed, it remains a challenge to simultaneously maintain and improve both language and mathematical capabilities in deployed LLM systems.In this work, we tailor the Self-Critique pipeline, which addresses the challenge in the feedback learning stage of LLM alignment. We first train a general Math-Critique model from the LLM itself to provide feedback signals. Then, we sequentially employ rejective fine-tuning and direct preference optimization over the LLM's own generations for data collection. Based on ChatGLM3-32B, we conduct a series of experiments on both academic and our newly created challenging dataset, MathUserEval. Results show that our pipeline significantly enhances the LLM's mathematical problem-solving while still improving its language ability, outperforming LLMs that could be two times larger. Related techniques have been deployed to ChatGLM\footnote{\url{https://chatglm.cn}}, an online serving LLM. Related evaluation dataset and scripts are released at \url{https://github.com/THUDM/ChatGLM-Math}.