Plotting

 Wang, Zihan


Lookahead Exploration with Neural Radiance Representation for Continuous Vision-Language Navigation

arXiv.org Artificial Intelligence

Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments. At each navigation step, the agent selects from possible candidate locations and then makes the move. For better navigation planning, the lookahead exploration strategy aims to effectively evaluate the agent's next action by accurately anticipating the future environment of candidate locations. To this end, some existing works predict RGB images for future environments, while this strategy suffers from image distortion and high computational cost. To address these issues, we propose the pre-trained hierarchical neural radiance representation model (HNR) to produce multi-level semantic features for future environments, which are more robust and efficient than pixel-wise RGB reconstruction. Furthermore, with the predicted future environmental representations, our lookahead VLN model is able to construct the navigable future path tree and select the optimal path via efficient parallel evaluation. Extensive experiments on the VLN-CE datasets confirm the effectiveness of our method.


MetaIE: Distilling a Meta Model from LLM for All Kinds of Information Extraction Tasks

arXiv.org Artificial Intelligence

Information extraction (IE) is a fundamental area in natural language processing where prompting large language models (LLMs), even with in-context examples, cannot defeat small LMs tuned on very small IE datasets. We observe that IE tasks, such as named entity recognition and relation extraction, all focus on extracting important information, which can be formalized as a label-to-span matching. In this paper, we propose a novel framework MetaIE to build a small LM as meta-model by learning to extract "important information", i.e., the meta-understanding of IE, so that this meta-model can be adapted to all kind of IE tasks effectively and efficiently. Specifically, MetaIE obtains the small LM via a symbolic distillation from an LLM following the label-to-span scheme. We construct the distillation dataset via sampling sentences from language model pre-training datasets (e.g., OpenWebText in our implementation) and prompting an LLM to identify the typed spans of "important information". We evaluate the meta-model under the few-shot adaptation setting. Extensive results on 13 datasets from 6 IE tasks confirm that MetaIE can offer a better starting point for few-shot tuning on IE datasets and outperform other meta-models from (1) vanilla language model pre-training, (2) multi-IE-task pre-training with human annotations, and (3) single-IE-task symbolic distillation from LLM. Moreover, we provide comprehensive analyses of MetaIE, such as the size of the distillation dataset, the meta-model architecture, and the size of the meta-model.


Utilizing Local Hierarchy with Adversarial Training for Hierarchical Text Classification

arXiv.org Artificial Intelligence

Hierarchical text classification (HTC) is a challenging subtask of multi-label classification due to its complex taxonomic structure. Nearly all recent HTC works focus on how the labels are structured but ignore the sub-structure of ground-truth labels according to each input text which contains fruitful label co-occurrence information. In this work, we introduce this local hierarchy with an adversarial framework. We propose a HiAdv framework that can fit in nearly all HTC models and optimize them with the local hierarchy as auxiliary information. We test on two typical HTC models and find that HiAdv is effective in all scenarios and is adept at dealing with complex taxonomic hierarchies. Further experiments demonstrate that the promotion of our framework indeed comes from the local hierarchy and the local hierarchy is beneficial for rare classes which have insufficient training data.


Towards Robustness and Diversity: Continual Learning in Dialog Generation with Text-Mixup and Batch Nuclear-Norm Maximization

arXiv.org Artificial Intelligence

In our dynamic world where data arrives in a continuous stream, continual learning enables us to incrementally add new tasks/domains without the need to retrain from scratch. A major challenge in continual learning of language model is catastrophic forgetting, the tendency of models to forget knowledge from previously trained tasks/domains when training on new ones. This paper studies dialog generation under the continual learning setting. We propose a novel method that 1) uses \textit{Text-Mixup} as data augmentation to avoid model overfitting on replay memory and 2) leverages Batch-Nuclear Norm Maximization (BNNM) to alleviate the problem of mode collapse. Experiments on a $37$-domain task-oriented dialog dataset and DailyDialog (a $10$-domain chitchat dataset) demonstrate that our proposed approach outperforms the state-of-the-art in continual learning.


Learning with Noisy Foundation Models

arXiv.org Artificial Intelligence

Foundation models are usually pre-trained on large-scale datasets and then adapted to downstream tasks through tuning. However, the large-scale pre-training datasets, often inaccessible or too expensive to handle, can contain label noise that may adversely affect the generalization of the model and pose unexpected risks. This paper stands out as the first work to comprehensively understand and analyze the nature of noise in pre-training datasets and then effectively mitigate its impacts on downstream tasks. Specifically, through extensive experiments of fully-supervised and image-text contrastive pre-training on synthetic noisy ImageNet-1K, YFCC15M, and CC12M datasets, we demonstrate that, while slight noise in pre-training can benefit in-domain (ID) performance, where the training and testing data share a similar distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing distributions are significantly different. These observations are agnostic to scales of pre-training datasets, pre-training noise types, model architectures, pre-training objectives, downstream tuning methods, and downstream applications. We empirically ascertain that the reason behind this is that the pre-training noise shapes the feature space differently. We then propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization, which is applicable in both parameter-efficient and black-box tuning manners. We additionally conduct extensive experiments on popular vision and language models, including APIs, which are supervised and self-supervised pre-trained on realistic noisy data for evaluation. Our analysis and results demonstrate the importance of this novel and fundamental research direction, which we term as Noisy Model Learning.


VN Network: Embedding Newly Emerging Entities with Virtual Neighbors

arXiv.org Artificial Intelligence

Embedding entities and relations into continuous vector spaces has attracted a surge of interest in recent years. Most embedding methods assume that all test entities are available during training, which makes it time-consuming to retrain embeddings for newly emerging entities. To address this issue, recent works apply the graph neural network on the existing neighbors of the unseen entities. In this paper, we propose a novel framework, namely Virtual Neighbor (VN) network, to address three key challenges. Firstly, to reduce the neighbor sparsity problem, we introduce the concept of the virtual neighbors inferred by rules. And we assign soft labels to these neighbors by solving a rule-constrained problem, rather than simply regarding them as unquestionably true. Secondly, many existing methods only use one-hop or two-hop neighbors for aggregation and ignore the distant information that may be helpful. Instead, we identify both logic and symmetric path rules to capture complex patterns. Finally, instead of one-time injection of rules, we employ an iterative learning scheme between the embedding method and virtual neighbor prediction to capture the interactions within. Experimental results on two knowledge graph completion tasks demonstrate that our VN network significantly outperforms state-of-the-art baselines. Furthermore, results on Subject/Object-R show that our proposed VN network is highly robust to the neighbor sparsity problem.


Answer is All You Need: Instruction-following Text Embedding via Answering the Question

arXiv.org Artificial Intelligence

This work aims to build a text embedder that can capture characteristics of texts specified by user instructions. Despite its tremendous potential to deploy user-oriented embeddings, none of previous approaches provides a concrete solution for it. This paper offers a new viewpoint, which treats the instruction as a question about the input text and encodes the expected answers to obtain the representation accordingly. Intuitively, texts with the same (implicit) semantics would share similar answers following the instruction, thus leading to more similar embeddings. Specifically, we propose InBedder that instantiates this embed-via-answering idea by only fine-tuning language models on abstractive question answering tasks. InBedder demonstrates significantly improved instruction-following capabilities according to our proposed instruction awareness tests and instruction robustness tests, when applied to both large language models (LLMs) (e.g., llama-2-7b) and smaller encoder-based LMs (e.g., roberta-large). Additionally, our qualitative analysis of clustering outcomes, achieved by applying different instructions to the same corpus, demonstrates a high degree of interpretability.


Data Reconstruction Attacks and Defenses: A Systematic Evaluation

arXiv.org Artificial Intelligence

Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical groundings, and was unable to disentangle the usefulness of defending methods versus the computational limitation of attacking methods. In this work, we propose a strong reconstruction attack in the setting of federated learning. The attack reconstructs intermediate features and nicely integrates with and outperforms most of the previous methods. On this stronger attack, we thoroughly investigate both theoretically and empirically the effect of the most common defense methods. Our findings suggest that among various defense mechanisms, such as gradient clipping, dropout, additive noise, local aggregation, etc., gradient pruning emerges as the most effective strategy to defend against state-of-the-art attacks.


Multi-step Problem Solving Through a Verifier: An Empirical Analysis on Model-induced Process Supervision

arXiv.org Artificial Intelligence

Process supervision, using a trained verifier to evaluate the intermediate steps generated by reasoner, has demonstrated significant improvements in multi-step problem solving. In this paper, to avoid expensive human annotation effort on the verifier training data, we introduce Model-induced Process Supervision (MiPS), a novel method for automating data curation. MiPS annotates an intermediate step by sampling completions of this solution through the reasoning model, and obtaining an accuracy defined as the proportion of correct completions. Errors in the reasoner would cause MiPS to underestimate the accuracy of intermediate steps, therefore, we suggest and empirically show that verification focusing on high predicted scores of the verifier shall be preferred over that of low predicted scores, contrary to prior work. Our approach significantly improves the performance of PaLM 2 on math and coding tasks (accuracy +0.67% on GSM8K, +4.16% on MATH, +0.92% on MBPP compared with an output supervision trained verifier). Additionally, our study demonstrates that the verifier exhibits strong generalization ability across different reasoning models.


Vision-driven Autonomous Flight of UAV Along River Using Deep Reinforcement Learning with Dynamic Expert Guidance

arXiv.org Artificial Intelligence

Vision-driven autonomous flight and obstacle avoidance of Unmanned Aerial Vehicles (UAVs) along complex riverine environments for tasks like rescue and surveillance requires a robust control policy, which is yet difficult to obtain due to the shortage of trainable river environment simulators and reward sparsity in such environments. To easily verify the navigation controller performance for the river following task before real-world deployment, we developed a trainable photo-realistic dynamics-free riverine simulation environment using Unity. Successful river following trajectories in the environment are manually collected and Behavior Clone (BC) is used to train an Imitation Learning (IL) agent to mimic expert behavior and generate expert guidance. Finally, a framework is proposed to train a Deep Reinforcement Learning (DRL) agent using BC expert guidance and improve the expert policy online by sampling good demonstrations produced by the DRL to increase convergence rate and policy performance. This framework is able to solve the along-river autonomous navigation task and outperform baseline RL and IL methods. The code and trainable environments are available.