Wang, Zifan
Learning Modulo Theories
Fredrikson, Matt, Lu, Kaiji, Vijayakumar, Saranya, Jha, Somesh, Ganesh, Vijay, Wang, Zifan
Recent techniques that integrate \emph{solver layers} into Deep Neural Networks (DNNs) have shown promise in bridging a long-standing gap between inductive learning and symbolic reasoning techniques. In this paper we present a set of techniques for integrating \emph{Satisfiability Modulo Theories} (SMT) solvers into the forward and backward passes of a deep network layer, called SMTLayer. Using this approach, one can encode rich domain knowledge into the network in the form of mathematical formulas. In the forward pass, the solver uses symbols produced by prior layers, along with these formulas, to construct inferences; in the backward pass, the solver informs updates to the network, driving it towards representations that are compatible with the solver's theory. Notably, the solver need not be differentiable. We implement \layername as a Pytorch module, and our empirical results show that it leads to models that \emph{1)} require fewer training samples than conventional models, \emph{2)} that are robust to certain types of covariate shift, and \emph{3)} that ultimately learn representations that are consistent with symbolic knowledge, and thus naturally interpretable.
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Wang, Zifan, Ding, Nan, Levinboim, Tomer, Chen, Xi, Soricut, Radu
Recent research in robust optimization has shown an overfitting-like phenomenon in which models trained against adversarial attacks exhibit higher robustness on the training set compared to the test set. Although previous work provided theoretical explanations for this phenomenon using a robust PAC-Bayesian bound over the adversarial test error, related algorithmic derivations are at best only loosely connected to this bound, which implies that there is still a gap between their empirical success and our understanding of adversarial robustness theory. To close this gap, in this paper we consider a different form of the robust PAC-Bayesian bound and directly minimize it with respect to the model posterior. The derivation of the optimal solution connects PAC-Bayesian learning to the geometry of the robust loss surface through a Trace of Hessian (TrH) regularizer that measures the surface flatness. In practice, we restrict the TrH regularizer to the top layer only, which results in an analytical solution to the bound whose computational cost does not depend on the network depth. Finally, we evaluate our TrH regularization approach over CIFAR-10/100 and ImageNet using Vision Transformers (ViT) and compare against baseline adversarial robustness algorithms. Experimental results show that TrH regularization leads to improved ViT robustness that either matches or surpasses previous state-of-the-art approaches while at the same time requires less memory and computational cost.
Globally-Robust Neural Networks
Leino, Klas, Wang, Zifan, Fredrikson, Matt
The threat of adversarial examples has motivated work on training certifiably robust neural networks, to facilitate efficient verification of local robustness at inference time. We formalize a notion of global robustness, which captures the operational properties of on-line local robustness certification while yielding a natural learning objective for robust training. We show that widely-used architectures can be easily adapted to this objective by incorporating efficient global Lipschitz bounds into the network, yielding certifiably-robust models by construction that achieve state-of-the-art verifiable and clean accuracy. Notably, this approach requires significantly less time and memory than recent certifiable training methods, and leads to negligible costs when certifying points on-line; for example, our evaluation shows that it is possible to train a large tiny-imagenet model in a matter of hours. We posit that this is possible using inexpensive global bounds -- despite prior suggestions that tighter local bounds are needed for good performance -- because these models are trained to achieve tighter global bounds. Namely, we prove that the maximum achievable verifiable accuracy for a given dataset is not improved by using a local bound.
Smoothed Geometry for Robust Attribution
Wang, Zifan, Wang, Haofan, Ramkumar, Shakul, Fredrikson, Matt, Mardziel, Piotr, Datta, Anupam
Feature attributions are a popular tool for explaining the behavior of Deep Neural Networks (DNNs), but have recently been shown to be vulnerable to attacks that produce divergent explanations for nearby inputs. This lack of robustness is especially problematic in high-stakes applications where adversarially-manipulated explanations could impair safety and trustworthiness. Building on a geometric understanding of these attacks presented in recent work, we identify Lipschitz continuity conditions on models' gradients that lead to robust gradient-based attributions, and observe that the smoothness of the model's decision surface is related to the transferability of attacks across multiple attribution methods. To mitigate these attacks in practice, we propose an inexpensive regularization method that promotes these conditions in DNNs, as well as a stochastic smoothing technique that does not require retraining. Our experiments on a range of image models demonstrate that both of these mitigations consistently improve attribution robustness, and confirm the role that smooth geometry plays in these attacks on real, large-scale models.
Towards Behavior-Level Explanation for Deep Reinforcement Learning
Chen, Xuan, Wang, Zifan, Fan, Yucai, Jin, Bonan, Mardziel, Piotr, Joe-Wong, Carlee, Datta, Anupam
While Deep Neural Networks (DNNs) are becoming the state-of-the-art for many tasks including reinforcement learning (RL), they are especially resistant to human scrutiny and understanding. Input attributions have been a foundational building block for DNN expalainabilty but face new challenges when applied to deep RL. We address the challenges with two novel techniques. We define a class of \emph{behaviour-level attributions} for explaining agent behaviour beyond input importance and interpret existing attribution methods on the behaviour level. We then introduce \emph{$\lambda$-alignment}, a metric for evaluating the performance of behaviour-level attributions methods in terms of whether they are indicative of the agent actions they are meant to explain. Our experiments on Atari games suggest that perturbation-based attribution methods are significantly more suitable to deep RL than alternatives from the perspective of this metric. We argue that our methods demonstrate the minimal set of considerations for adopting general DNN explanation technology to the unique aspects of reinforcement learning and hope the outlined direction can serve as a basis for future research on understanding Deep RL using attribution.
Towards Frequency-Based Explanation for Robust CNN
Wang, Zifan, Yang, Yilin, Shrivastava, Ankit, Rawal, Varun, Ding, Zihao
Current explanation techniques towards a transparent Convolutional Neural Network (CNN) mainly focuses on building connections between the human-understandable input features with models' prediction, overlooking an alternative representation of the input, the frequency components decomposition. In this work, we present an analysis of the connection between the distribution of frequency components in the input dataset and the reasoning process the model learns from the data. We further provide quantification analysis about the contribution of different frequency components toward the model's prediction. We show that the vulnerability of the model against tiny distortions is a result of the model is relying on the high-frequency features, the target features of the adversarial (black and white-box) attackers, to make the prediction. We further show that if the model develops stronger association between the low-frequency component with true labels, the model is more robust, which is the explanation of why adversarially trained models are more robust against tiny distortions.