Not enough data to create a plot.
Try a different view from the menu above.
Wang, Zian
WaterPark: A Robustness Assessment of Language Model Watermarking
Liang, Jiacheng, Wang, Zian, Hong, Lauren, Ji, Shouling, Wang, Ting
Various watermarking methods (``watermarkers'') have been proposed to identify LLM-generated texts; yet, due to the lack of unified evaluation platforms, many critical questions remain under-explored: i) What are the strengths/limitations of various watermarkers, especially their attack robustness? ii) How do various design choices impact their robustness? iii) How to optimally operate watermarkers in adversarial environments? To fill this gap, we systematize existing LLM watermarkers and watermark removal attacks, mapping out their design spaces. We then develop WaterPark, a unified platform that integrates 10 state-of-the-art watermarkers and 12 representative attacks. More importantly, by leveraging WaterPark, we conduct a comprehensive assessment of existing watermarkers, unveiling the impact of various design choices on their attack robustness. We further explore the best practices to operate watermarkers in adversarial environments. We believe our study sheds light on current LLM watermarking techniques while WaterPark serves as a valuable testbed to facilitate future research.
RobustKV: Defending Large Language Models against Jailbreak Attacks via KV Eviction
Jiang, Tanqiu, Wang, Zian, Liang, Jiacheng, Li, Changjiang, Wang, Yuhui, Wang, Ting
Jailbreak attacks circumvent LLMs' built-in safeguards by concealing harmful queries within jailbreak prompts. While existing defenses primarily focus on mitigating the effects of jailbreak prompts, they often prove inadequate as jailbreak prompts can take arbitrary, adaptive forms. This paper presents RobustKV, a novel defense that adopts a fundamentally different approach by selectively removing critical tokens of harmful queries from key-value (KV) caches. Intuitively, for a jailbreak prompt to be effective, its tokens must achieve sufficient'importance' (as measured by attention scores), which inevitably lowers the importance of tokens in the concealed harmful query. Thus, by strategically evicting the KVs of the lowest-ranked tokens, RobustKV diminishes the presence of the harmful query in the KV cache, thus preventing the LLM from generating malicious responses. Extensive evaluation using benchmark datasets and models demonstrates that RobustKV effectively counters state-of-the-art jailbreak attacks while maintaining the LLM's general performance on benign queries. Moreover, RobustKV creates an intriguing evasiveness dilemma for adversaries, forcing them to balance between evading RobustKV and bypassing the LLM's built-in safeguards. This trade-off contributes to RobustKV's robustness against adaptive attacks. Large language models (LLMs) have gained surging popularity due to their unprecedented performance across various tasks. However, recent studies reveal that LLMs are vulnerable to a range of malicious manipulations, including training data leakage (Carlini et al., 2021), toxic content generation (Deshpande et al., 2023), and malicious fine-tuning (Qi et al., 2024). Of particular concern are jailbreak attacks, which represent a major threat to LLM security (Liu et al., 2023a).
Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks
Anwar, Aqeel, Choe, Tae Eun, Wang, Zian, Fidler, Sanja, Park, Minwoo
Detecting a diverse range of objects under various driving scenarios is essential for the effectiveness of autonomous driving systems. However, the real-world data collected often lacks the necessary diversity presenting a long-tail distribution. Although synthetic data has been utilized to overcome this issue by generating virtual scenes, it faces hurdles such as a significant domain gap and the substantial efforts required from 3D artists to create realistic environments. To overcome these challenges, we present ARSim, a fully automated, comprehensive, modular framework designed to enhance real multi-view image data with 3D synthetic objects of interest. The proposed method integrates domain adaptation and randomization strategies to address covariate shift between real and simulated data by inferring essential domain attributes from real data and employing simulation-based randomization for other attributes. We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it. Illumination is achieved by estimating light distribution from multiple images capturing the surroundings of the vehicle. Camera parameters from real data are employed to render synthetic assets in each frame. The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles. Experimental results on various AV perception tasks demonstrate the superior performance of networks trained on the augmented dataset.
HungerGist: An Interpretable Predictive Model for Food Insecurity
Ahn, Yongsu, Yan, Muheng, Lin, Yu-Ru, Wang, Zian
The escalating food insecurity in Africa, caused by factors such as war, climate change, and poverty, demonstrates the critical need for advanced early warning systems. Traditional methodologies, relying on expert-curated data encompassing climate, geography, and social disturbances, often fall short due to data limitations, hindering comprehensive analysis and potential discovery of new predictive factors. To address this, this paper introduces "HungerGist", a multi-task deep learning model utilizing news texts and NLP techniques. Using a corpus of over 53,000 news articles from nine African countries over four years, we demonstrate that our model, trained solely on news data, outperforms the baseline method trained on both traditional risk factors and human-curated keywords. In addition, our method has the ability to detect critical texts that contain interpretable signals known as "gists." Moreover, our examination of these gists indicates that this approach has the potential to reveal latent factors that would otherwise remain concealed in unstructured texts.
Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
Shen, Tianchang, Munkberg, Jacob, Hasselgren, Jon, Yin, Kangxue, Wang, Zian, Chen, Wenzheng, Gojcic, Zan, Fidler, Sanja, Sharp, Nicholas, Gao, Jun
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field, an increasingly common paradigm in applications including photogrammetry, generative modeling, and inverse physics. Existing implementations adapt classic isosurface extraction algorithms like Marching Cubes or Dual Contouring; these techniques were designed to extract meshes from fixed, known fields, and in the optimization setting they lack the degrees of freedom to represent high-quality feature-preserving meshes, or suffer from numerical instabilities. We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives. Our main insight is to introduce additional carefully-chosen parameters into the representation, which allow local flexible adjustments to the extracted mesh geometry and connectivity. These parameters are updated along with the underlying scalar field via automatic differentiation when optimizing for a downstream task. We base our extraction scheme on Dual Marching Cubes for improved topological properties, and present extensions to optionally generate tetrahedral and hierarchically-adaptive meshes. Extensive experiments validate FlexiCubes on both synthetic benchmarks and real-world applications, showing that it offers significant improvements in mesh quality and geometric fidelity.
Retire: Robust Expectile Regression in High Dimensions
Man, Rebeka, Tan, Kean Ming, Wang, Zian, Zhou, Wen-Xin
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.