Goto

Collaborating Authors

 Wang, Zhiyong


Variance-Dependent Regret Bounds for Non-stationary Linear Bandits

arXiv.org Artificial Intelligence

We investigate the non-stationary stochastic linear bandit problem where the reward distribution evolves each round. Existing algorithms characterize the non-stationarity by the total variation budget $B_K$, which is the summation of the change of the consecutive feature vectors of the linear bandits over $K$ rounds. However, such a quantity only measures the non-stationarity with respect to the expectation of the reward distribution, which makes existing algorithms sub-optimal under the general non-stationary distribution setting. In this work, we propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds. Specifically, we introduce two novel algorithms: Restarted Weighted$\text{OFUL}^+$ and Restarted $\text{SAVE}^+$. These algorithms address cases where the variance information of the rewards is known and unknown, respectively. Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary stochastic linear bandits under different settings. Experimental evaluations further validate the superior performance of our proposed algorithms over existing works.


Federated Contextual Cascading Bandits with Asynchronous Communication and Heterogeneous Users

arXiv.org Artificial Intelligence

We study the problem of federated contextual combinatorial cascading bandits, where $|\mathcal{U}|$ agents collaborate under the coordination of a central server to provide tailored recommendations to the $|\mathcal{U}|$ corresponding users. Existing works consider either a synchronous framework, necessitating full agent participation and global synchronization, or assume user homogeneity with identical behaviors. We overcome these limitations by considering (1) federated agents operating in an asynchronous communication paradigm, where no mandatory synchronization is required and all agents communicate independently with the server, (2) heterogeneous user behaviors, where users can be stratified into $J \le |\mathcal{U}|$ latent user clusters, each exhibiting distinct preferences. For this setting, we propose a UCB-type algorithm with delicate communication protocols. Through theoretical analysis, we give sub-linear regret bounds on par with those achieved in the synchronous framework, while incurring only logarithmic communication costs. Empirical evaluation on synthetic and real-world datasets validates our algorithm's superior performance in terms of regrets and communication costs.


Design Your Own Universe: A Physics-Informed Agnostic Method for Enhancing Graph Neural Networks

arXiv.org Artificial Intelligence

Physics-informed Graph Neural Networks have achieved remarkable performance in learning through graph-structured data by mitigating common GNN challenges such as over-smoothing, over-squashing, and heterophily adaption. Despite these advancements, the development of a simple yet effective paradigm that appropriately integrates previous methods for handling all these challenges is still underway. In this paper, we draw an analogy between the propagation of GNNs and particle systems in physics, proposing a model-agnostic enhancement framework. This framework enriches the graph structure by introducing additional nodes and rewiring connections with both positive and negative weights, guided by node labeling information. We theoretically verify that GNNs enhanced through our approach can effectively circumvent the over-smoothing issue and exhibit robustness against over-squashing. Moreover, we conduct a spectral analysis on the rewired graph to demonstrate that the corresponding GNNs can fit both homophilic and heterophilic graphs. Empirical validations on benchmarks for homophilic, heterophilic graphs, and long-term graph datasets show that GNNs enhanced by our method significantly outperform their original counterparts.


XAI for In-hospital Mortality Prediction via Multimodal ICU Data

arXiv.org Artificial Intelligence

Predicting in-hospital mortality for intensive care unit (ICU) patients is key to final clinical outcomes. AI has shown advantaged accuracy but suffers from the lack of explainability. To address this issue, this paper proposes an eXplainable Multimodal Mortality Predictor (X-MMP) approaching an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data. We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions. Furthermore, we introduce an explainable method, namely Layer-Wise Propagation to Transformer, as a proper extension of the LRP method to Transformers, producing explanations over multimodal inputs and revealing the salient features attributed to prediction. Moreover, the contribution of each modality to clinical outcomes can be visualized, assisting clinicians in understanding the reasoning behind decision-making. We construct a multimodal dataset based on MIMIC-III and MIMIC-III Waveform Database Matched Subset. Comprehensive experiments on benchmark datasets demonstrate that our proposed framework can achieve reasonable interpretation with competitive prediction accuracy. In particular, our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.


Part to Whole: Collaborative Prompting for Surgical Instrument Segmentation

arXiv.org Artificial Intelligence

Foundation models like the Segment Anything Model (SAM) have demonstrated promise in generic object segmentation. However, directly applying SAM to surgical instrument segmentation presents key challenges. First, SAM relies on per-frame point-or-box prompts which complicate surgeon-computer interaction. Also, SAM yields suboptimal performance on segmenting surgical instruments, owing to insufficient surgical data in its pre-training as well as the complex structure and fine-grained details of various surgical instruments. To address these challenges, in this paper, we investigate text promptable surgical instrument segmentation and propose SP-SAM (SurgicalPart-SAM), a novel efficient-tuning approach that integrates surgical instrument structure knowledge with the generic segmentation knowledge of SAM. Specifically, we achieve this by proposing (1) collaborative prompts in the text form "[part name] of [instrument category name]" that decompose instruments into fine-grained parts; (2) a Cross-Modal Prompt Encoder that encodes text prompts jointly with visual embeddings into discriminative part-level representations; and (3) a Part-to-Whole Selective Fusion and a Hierarchical Decoding strategy that selectively assemble the part-level representations into a whole for accurate instrument segmentation. Built upon them, SP-SAM acquires a better capability to comprehend surgical instrument structures and distinguish between various categories. Extensive experiments on both the EndoVis2018 and EndoVis2017 datasets demonstrate SP-SAM's state-of-the-art performance with minimal tunable parameters. Code is at https://github.com/wenxi-yue/SurgicalPart-SAM.


SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation

arXiv.org Artificial Intelligence

The Segment Anything Model (SAM) is a powerful foundation model that has revolutionised image segmentation. To apply SAM to surgical instrument segmentation, a common approach is to locate precise points or boxes of instruments and then use them as prompts for SAM in a zero-shot manner. However, we observe two problems with this naive pipeline: (1) the domain gap between natural objects and surgical instruments leads to inferior generalisation of SAM; and (2) SAM relies on precise point or box locations for accurate segmentation, requiring either extensive manual guidance or a well-performing specialist detector for prompt preparation, which leads to a complex multi-stage pipeline. To address these problems, we introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to effectively integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation. Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes and eliminates the use of explicit prompts for improved robustness and a simpler pipeline. In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning, further enhancing the discrimination of the class prototypes for more accurate class prompting. The results of extensive experiments on both EndoVis2018 and EndoVis2017 datasets demonstrate that SurgicalSAM achieves state-of-the-art performance while only requiring a small number of tunable parameters. The source code is available at https://github.com/wenxi-yue/SurgicalSAM.


Online Clustering of Bandits with Misspecified User Models

arXiv.org Artificial Intelligence

The contextual linear bandit is an important online learning problem where given arm features, a learning agent selects an arm at each round to maximize the cumulative rewards in the long run. A line of works, called the clustering of bandits (CB), utilize the collaborative effect over user preferences and have shown significant improvements over classic linear bandit algorithms. However, existing CB algorithms require well-specified linear user models and can fail when this critical assumption does not hold. Whether robust CB algorithms can be designed for more practical scenarios with misspecified user models remains an open problem. In this paper, we are the first to present the important problem of clustering of bandits with misspecified user models (CBMUM), where the expected rewards in user models can be perturbed away from perfect linear models. We devise two robust CB algorithms, RCLUMB and RSCLUMB (representing the learned clustering structure with dynamic graph and sets, respectively), that can accommodate the inaccurate user preference estimations and erroneous clustering caused by model misspecifications. We prove regret upper bounds of $O(\epsilon_*T\sqrt{md\log T} + d\sqrt{mT}\log T)$ for our algorithms under milder assumptions than previous CB works (notably, we move past a restrictive technical assumption on the distribution of the arms), which match the lower bound asymptotically in $T$ up to logarithmic factors, and also match the state-of-the-art results in several degenerate cases. The techniques in proving the regret caused by misclustering users are quite general and may be of independent interest. Experiments on both synthetic and real-world data show our outperformance over previous algorithms.


Online Corrupted User Detection and Regret Minimization

arXiv.org Artificial Intelligence

In real-world online web systems, multiple users usually arrive sequentially into the system. For applications like click fraud and fake reviews, some users can maliciously perform corrupted (disrupted) behaviors to trick the system. Therefore, it is crucial to design efficient online learning algorithms to robustly learn from potentially corrupted user behaviors and accurately identify the corrupted users in an online manner. Existing works propose bandit algorithms robust to adversarial corruption. However, these algorithms are designed for a single user, and cannot leverage the implicit social relations among multiple users for more efficient learning. Moreover, none of them consider how to detect corrupted users online in the multiple-user scenario. In this paper, we present an important online learning problem named LOCUD to learn and utilize unknown user relations from disrupted behaviors to speed up learning, and identify the corrupted users in an online setting. To robustly learn and utilize the unknown relations among potentially corrupted users, we propose a novel bandit algorithm RCLUB-WCU. To detect the corrupted users, we devise a novel online detection algorithm OCCUD based on RCLUB-WCU's inferred user relations. We prove a regret upper bound for RCLUB-WCU, which asymptotically matches the lower bound with respect to $T$ up to logarithmic factors, and matches the state-of-the-art results in degenerate cases. We also give a theoretical guarantee for the detection accuracy of OCCUD. With extensive experiments, our methods achieve superior performance over previous bandit algorithms and high corrupted user detection accuracy.


Efficient Explorative Key-term Selection Strategies for Conversational Contextual Bandits

arXiv.org Machine Learning

Conversational contextual bandits elicit user preferences by occasionally querying for explicit feedback on key-terms to accelerate learning. However, there are aspects of existing approaches which limit their performance. First, information gained from key-term-level conversations and arm-level recommendations is not appropriately incorporated to speed up learning. Second, it is important to ask explorative key-terms to quickly elicit the user's potential interests in various domains to accelerate the convergence of user preference estimation, which has never been considered in existing works. To tackle these issues, we first propose ``ConLinUCB", a general framework for conversational bandits with better information incorporation, combining arm-level and key-term-level feedback to estimate user preference in one step at each time. Based on this framework, we further design two bandit algorithms with explorative key-term selection strategies, ConLinUCB-BS and ConLinUCB-MCR. We prove tighter regret upper bounds of our proposed algorithms. Particularly, ConLinUCB-BS achieves a regret bound of $O(d\sqrt{T\log T})$, better than the previous result $O(d\sqrt{T}\log T)$. Extensive experiments on synthetic and real-world data show significant advantages of our algorithms in learning accuracy (up to 54\% improvement) and computational efficiency (up to 72\% improvement), compared to the classic ConUCB algorithm, showing the potential benefit to recommender systems.


Autoregressive Omni-Aware Outpainting for Open-Vocabulary 360-Degree Image Generation

arXiv.org Artificial Intelligence

A 360-degree (omni-directional) image provides an all-encompassing spherical view of a scene. Recently, there has been an increasing interest in synthesising 360-degree images from conventional narrow field of view (NFoV) images captured by digital cameras and smartphones, for providing immersive experiences in various scenarios such as virtual reality. Yet, existing methods typically fall short in synthesizing intricate visual details or ensure the generated images align consistently with user-provided prompts. In this study, autoregressive omni-aware generative network (AOG-Net) is proposed for 360-degree image generation by out-painting an incomplete 360-degree image progressively with NFoV and text guidances joinly or individually. This autoregressive scheme not only allows for deriving finer-grained and text-consistent patterns by dynamically generating and adjusting the process but also offers users greater flexibility to edit their conditions throughout the generation process. A global-local conditioning mechanism is devised to comprehensively formulate the outpainting guidance in each autoregressive step. Text guidances, omni-visual cues, NFoV inputs and omni-geometry are encoded and further formulated with cross-attention based transformers into a global stream and a local stream into a conditioned generative backbone model. As AOG-Net is compatible to leverage large-scale models for the conditional encoder and the generative prior, it enables the generation to use extensive open-vocabulary text guidances. Comprehensive experiments on two commonly used 360-degree image datasets for both indoor and outdoor settings demonstrate the state-of-the-art performance of our proposed method. Our code will be made publicly available.