Plotting

 Wang, Zhiyong


B-VLLM: A Vision Large Language Model with Balanced Spatio-Temporal Tokens

arXiv.org Artificial Intelligence

Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at https://github.com/zhuqiangLu/B-VLLM.


Diffusing to the Top: Boost Graph Neural Networks with Minimal Hyperparameter Tuning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are proficient in graph representation learning and achieve promising performance on versatile tasks such as node classification and link prediction. Usually, a comprehensive hyperparameter tuning is essential for fully unlocking GNN's top performance, especially for complicated tasks such as node classification on large graphs and long-range graphs. This is usually associated with high computational and time costs and careful design of appropriate search spaces. This work introduces a graph-conditioned latent diffusion framework (GNN-Diff) to generate high-performing GNNs based on the model checkpoints of sub-optimal hyperparameters selected by a light-tuning coarse search. We validate our method through 166 experiments across four graph tasks: node classification on small, large, and long-range graphs, as well as link prediction. Our experiments involve 10 classic and state-of-the-art target models and 20 publicly available datasets. The results consistently demonstrate that GNN-Diff: (1) boosts the performance of GNNs with efficient hyperparameter tuning; and (2) presents high stability and generalizability on unseen data across multiple generation runs. The code is available at https://github.com/lequanlin/GNN-Diff.


When Graph Neural Networks Meet Dynamic Mode Decomposition

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have emerged as fundamental tools for a wide range of prediction tasks on graph-structured data. Recent studies have drawn analogies between GNN feature propagation and diffusion processes, which can be interpreted as dynamical systems. In this paper, we delve deeper into this perspective by connecting the dynamics in GNNs to modern Koopman theory and its numerical method, Dynamic Mode Decomposition (DMD). We illustrate how DMD can estimate a low-rank, finite-dimensional linear operator based on multiple states of the system, effectively approximating potential nonlinear interactions between nodes in the graph. This approach allows us to capture complex dynamics within the graph accurately and efficiently. We theoretically establish a connection between the DMD-estimated operator and the original dynamic operator between system states. Building upon this foundation, we introduce a family of DMD-GNN models that effectively leverage the low-rank eigenfunctions provided by the DMD algorithm. We further discuss the potential of enhancing our approach by incorporating domain-specific constraints such as symmetry into the DMD computation, allowing the corresponding GNN models to respect known physical properties of the underlying system. Our work paves the path for applying advanced dynamical system analysis tools via GNNs. We validate our approach through extensive experiments on various learning tasks, including directed graphs, large-scale graphs, long-range interactions, and spatial-temporal graphs. We also empirically verify that our proposed models can serve as powerful encoders for link prediction tasks. The results demonstrate that our DMD-enhanced GNNs achieve state-of-the-art performance, highlighting the effectiveness of integrating DMD into GNN frameworks.


Intelligent Fish Detection System with Similarity-Aware Transformer

arXiv.org Artificial Intelligence

Fish detection in water-land transfer has significantly contributed to the fishery. However, manual fish detection in crowd-collaboration performs inefficiently and expensively, involving insufficient accuracy. To further enhance the water-land transfer efficiency, improve detection accuracy, and reduce labor costs, this work designs a new type of lightweight and plug-and-play edge intelligent vision system to automatically conduct fast fish detection with high-speed camera. Moreover, a novel similarity-aware vision Transformer for fast fish detection (FishViT) is proposed to onboard identify every single fish in a dense and similar group. Specifically, a novel similarity-aware multi-level encoder is developed to enhance multi-scale features in parallel, thereby yielding discriminative representations for varying-size fish. Additionally, a new soft-threshold attention mechanism is introduced, which not only effectively eliminates background noise from images but also accurately recognizes both the edge details and overall features of different similar fish. 85 challenging video sequences with high framerate and high-resolution are collected to establish a benchmark from real fish water-land transfer scenarios. Exhaustive evaluation conducted with this challenging benchmark has proved the robustness and effectiveness of FishViT with over 80 FPS. Real work scenario tests validate the practicality of the proposed method. The code and demo video are available at https://github.com/vision4robotics/FishViT.


A multi-speaker multi-lingual voice cloning system based on vits2 for limmits 2024 challenge

arXiv.org Artificial Intelligence

This paper presents the development of a speech synthesis system for the LIMMITS'24 Challenge, focusing primarily on Track 2. The objective of the challenge is to establish a multi-speaker, multi-lingual Indic Text-to-Speech system with voice cloning capabilities, covering seven Indian languages with both male and female speakers. The system was trained using challenge data and fine-tuned for few-shot voice cloning on target speakers. Evaluation included both mono-lingual and cross-lingual synthesis across all seven languages, with subjective tests assessing naturalness and speaker similarity. Our system uses the VITS2 architecture, augmented with a multi-lingual ID and a BERT model to enhance contextual language comprehension. In Track 1, where no additional data usage was permitted, our model achieved a Speaker Similarity score of 4.02. In Track 2, which allowed the use of extra data, it attained a Speaker Similarity score of 4.17.


MINT: a Multi-modal Image and Narrative Text Dubbing Dataset for Foley Audio Content Planning and Generation

arXiv.org Artificial Intelligence

Foley audio, critical for enhancing the immersive experience in multimedia content, faces significant challenges in the AI-generated content (AIGC) landscape. Despite advancements in AIGC technologies for text and image generation, the foley audio dubbing remains rudimentary due to difficulties in cross-modal scene matching and content correlation. Current text-to-audio technology, which relies on detailed and acoustically relevant textual descriptions, falls short in practical video dubbing applications. Existing datasets like AudioSet, AudioCaps, Clotho, Sound-of-Story, and WavCaps do not fully meet the requirements for real-world foley audio dubbing task. To address this, we introduce the Multi-modal Image and Narrative Text Dubbing Dataset (MINT), designed to enhance mainstream dubbing tasks such as literary story audiobooks dubbing, image/silent video dubbing. Besides, to address the limitations of existing TTA technology in understanding and planning complex prompts, a Foley Audio Content Planning, Generation, and Alignment (CPGA) framework is proposed, which includes a content planning module leveraging large language models for complex multi-modal prompts comprehension. Additionally, the training process is optimized using Proximal Policy Optimization based reinforcement learning, significantly improving the alignment and auditory realism of generated foley audio. Experimental results demonstrate that our approach significantly advances the field of foley audio dubbing, providing robust solutions for the challenges of multi-modal dubbing. Even when utilizing the relatively lightweight GPT-2 model, our framework outperforms open-source multimodal large models such as LLaVA, DeepSeek-VL, and Moondream2. The dataset is available at https://github.com/borisfrb/MINT .


Generalized Source Tracing: Detecting Novel Audio Deepfake Algorithm with Real Emphasis and Fake Dispersion Strategy

arXiv.org Artificial Intelligence

With the proliferation of deepfake audio, there is an urgent need to investigate their attribution. Current source tracing methods can effectively distinguish in-distribution (ID) categories. However, the rapid evolution of deepfake algorithms poses a critical challenge in the accurate identification of out-of-distribution (OOD) novel deepfake algorithms. In this paper, we propose Real Emphasis and Fake Dispersion (REFD) strategy for audio deepfake algorithm recognition, demonstrating its effectiveness in discriminating ID samples while identifying OOD samples. For effective OOD detection, we first explore current post-hoc OOD methods and propose NSD, a novel OOD approach in identifying novel deepfake algorithms through the similarity consideration of both feature and logits scores. REFD achieves 86.83% F1-score as a single system in Audio Deepfake Detection Challenge 2023 Track3, showcasing its state-of-the-art performance.


Combinatorial Multivariant Multi-Armed Bandits with Applications to Episodic Reinforcement Learning and Beyond

arXiv.org Artificial Intelligence

We introduce a novel framework of combinatorial multi-armed bandits (CMAB) with multivariant and probabilistically triggering arms (CMAB-MT), where the outcome of each arm is a $d$-dimensional multivariant random variable and the feedback follows a general arm triggering process. Compared with existing CMAB works, CMAB-MT not only enhances the modeling power but also allows improved results by leveraging distinct statistical properties for multivariant random variables. For CMAB-MT, we propose a general 1-norm multivariant and triggering probability-modulated smoothness condition, and an optimistic CUCB-MT algorithm built upon this condition. Our framework can include many important problems as applications, such as episodic reinforcement learning (RL) and probabilistic maximum coverage for goods distribution, all of which meet the above smoothness condition and achieve matching or improved regret bounds compared to existing works. Through our new framework, we build the first connection between the episodic RL and CMAB literature, by offering a new angle to solve the episodic RL through the lens of CMAB, which may encourage more interactions between these two important directions.


Unleash Graph Neural Networks from Heavy Tuning

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are deep-learning architectures designed for graph-type data, where understanding relationships among individual observations is crucial. However, achieving promising GNN performance, especially on unseen data, requires comprehensive hyperparameter tuning and meticulous training. Unfortunately, these processes come with high computational costs and significant human effort. Additionally, conventional searching algorithms such as grid search may result in overfitting on validation data, diminishing generalization accuracy. To tackle these challenges, we propose a graph conditional latent diffusion framework (GNN-Diff) to generate high-performing GNNs directly by learning from checkpoints saved during a light-tuning coarse search. Our method: (1) unleashes GNN training from heavy tuning and complex search space design; (2) produces GNN parameters that outperform those obtained through comprehensive grid search; and (3) establishes higher-quality generation for GNNs compared to diffusion frameworks designed for general neural networks.


The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio

arXiv.org Artificial Intelligence

With the proliferation of Audio Language Model (ALM) based deepfake audio, there is an urgent need for generalized detection methods. ALM-based deepfake audio currently exhibits widespread, high deception, and type versatility, posing a significant challenge to current audio deepfake detection (ADD) models trained solely on vocoded data. To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method, the conversion from neural codec to waveform. We initially construct the Codecfake dataset, an open-source large-scale dataset, including 2 languages, over 1M audio samples, and various test conditions, focus on ALM-based audio detection. As countermeasure, to achieve universal detection of deepfake audio and tackle domain ascent bias issue of original SAM, we propose the CSAM strategy to learn a domain balanced and generalized minima. In our experiments, we first demonstrate that ADD model training with the Codecfake dataset can effectively detects ALM-based audio. Furthermore, our proposed generalization countermeasure yields the lowest average Equal Error Rate (EER) of 0.616% across all test conditions compared to baseline models. The dataset and associated code are available online.