Wang, Zhiwei
Short-term Load Forecasting at Different Aggregation Levels with Predictability Analysis
Peng, Yayu, Wang, Yishen, Lu, Xiao, Li, Haifeng, Shi, Di, Wang, Zhiwei, Li, Jie
Short-term load forecasting (STLF) is essential for the reliable and economic operation of power systems. Though many STLF methods were proposed over the past decades, most of them focused on loads at high aggregation levels only. Thus, low-aggregation load forecast still requires further research and development. Compared with the substation or city level loads, individual loads are typically more volatile and much more challenging to forecast. To further address this issue, this paper first discusses the characteristics of small-and-medium enterprise (SME) and residential loads at different aggregation levels and quantifies their predictability with approximate entropy. Various STLF techniques, from the conventional linear regression to state-of-the-art deep learning, are implemented for a detailed comparative analysis to verify the forecasting performances as well as the predictability using an Irish smart meter dataset. In addition, the paper also investigates how using data processing improves individual-level residential load forecasting with low predictability. Effectiveness of the discussed method is validated with numerical results.
Probabilistic Load Forecasting via Point Forecast Feature Integration
Chang, Qicheng, Wang, Yishen, Lu, Xiao, Shi, Di, Li, Haifeng, Duan, Jiajun, Wang, Zhiwei
Short-term load forecasting is a critical element of power systems energy management systems. In recent years, probabilistic load forecasting (PLF) has gained increased attention for its ability to provide uncertainty information that helps to improve the reliability and economics of system operation performances. This paper proposes a two-stage probabilistic load forecasting framework by integrating point forecast as a key probabilistic forecasting feature into PLF. In the first stage, all related features are utilized to train a point forecast model and also obtain the feature importance. In the second stage the forecasting model is trained, taking into consideration point forecast features, as well as selected feature subsets. During the testing period of the forecast model, the final probabilistic load forecast results are leveraged to obtain both point forecasting and probabilistic forecasting. Numerical results obtained from ISO New England demand data demonstrate the effectiveness of the proposed approach in the hour-ahead load forecasting, which uses the gradient boosting regression for the point forecasting and quantile regression neural networks for the probabilistic forecasting.
Submodular Load Clustering with Robust Principal Component Analysis
Wang, Yishen, Lu, Xiao, Xu, Yiran, Shi, Di, Yi, Zhehan, Duan, Jiajun, Wang, Zhiwei
Traditional load analysis is facing challenges with the new electricity usage patterns due to demand response as well as increasing deployment of distributed generations, including photovoltaics (PV), electric vehicles (EV), and energy storage systems (ESS). At the transmission system, despite of irregular load behaviors at different areas, highly aggregated load shapes still share similar characteristics. Load clustering is to discover such intrinsic patterns and provide useful information to other load applications, such as load forecasting and load modeling. This paper proposes an efficient submodular load clustering method for transmission-level load areas. Robust principal component analysis (R-PCA) firstly decomposes the annual load profiles into low-rank components and sparse components to extract key features. A novel submodular cluster center selection technique is then applied to determine the optimal cluster centers through constructed similarity graph. Following the selection results, load areas are efficiently assigned to different clusters for further load analysis and applications. Numerical results obtained from PJM load demonstrate the effectiveness of the proposed approach.
Semi-supervised mp-MRI Data Synthesis with StitchLayer and Auxiliary Distance Maximization
Wang, Zhiwei, Lin, Yi, Cheng, Kwang-Ting, Yang, Xin
In this paper, we address the problem of synthesizing multi-parameter magnetic resonance imaging (mp-MRI) data, i.e. Apparent Diffusion Coefficients (ADC) and T2-weighted (T2w), containing clinically significant (CS) prostate cancer (PCa) via semi-supervised adversarial learning. Specifically, our synthesizer generates mp-MRI data in a sequential manner: first generating ADC maps from 128-d latent vectors, followed by translating them to the T2w images. The synthesizer is trained in a semisupervised manner. In the supervised training process, a limited amount of paired ADC-T2w images and the corresponding ADC encodings are provided and the synthesizer learns the paired relationship by explicitly minimizing the reconstruction losses between synthetic and real images. To avoid overfitting limited ADC encodings, an unlimited amount of random latent vectors and unpaired ADC-T2w Images are utilized in the unsupervised training process for learning the marginal image distributions of real images. To improve the robustness of synthesizing, we decompose the difficult task of generating full-size images into several simpler tasks which generate sub-images only. A StitchLayer is then employed to fuse sub-images together in an interlaced manner into a full-size image. To enforce the synthetic images to indeed contain distinguishable CS PCa lesions, we propose to also maximize an auxiliary distance of Jensen-Shannon divergence (JSD) between CS and nonCS images. Experimental results show that our method can effectively synthesize a large variety of mpMRI images which contain meaningful CS PCa lesions, display a good visual quality and have the correct paired relationship. Compared to the state-of-the-art synthesis methods, our method achieves a significant improvement in terms of both visual and quantitative evaluation metrics.
Power Market Price Forecasting via Deep Learning
Zhu, Yongli, Lu, Songtao, Dai, Renchang, Liu, Guangyi, Wang, Zhiwei
A study on power market price forecasting by deep learning is presented. As one of the most successful deep learning frameworks, the LSTM (Long short-term memory) neural network is utilized. The hourly prices data from the New England and PJM day-ahead markets are used in this study. First, a LSTM network is formulated and trained. Then the raw input and output data are preprocessed by unit scaling, and the trained network is tested on the real price data under different input lengths, forecasting horizons and data sizes. Its performance is also compared with other existing methods. The forecasted results demonstrate that, the LSTM deep neural network can outperform the others under different application settings in this problem.
Linked Recurrent Neural Networks
Wang, Zhiwei, Ma, Yao, Yin, Dawei, Tang, Jiliang
Recurrent Neural Networks (RNNs) have been proven to be effective in modeling sequential data and they have been applied to boost a variety of tasks such as document classification, speech recognition and machine translation. Most of existing RNN models have been designed for sequences assumed to be identically and independently distributed (i.i.d). However, in many real-world applications, sequences are naturally linked. For example, web documents are connected by hyperlinks; and genes interact with each other. On the one hand, linked sequences are inherently not i.i.d., which poses tremendous challenges to existing RNN models. On the other hand, linked sequences offer link information in addition to the sequential information, which enables unprecedented opportunities to build advanced RNN models. In this paper, we study the problem of RNN for linked sequences. In particular, we introduce a principled approach to capture link information and propose a linked Recurrent Neural Network (LinkedRNN), which models sequential and link information coherently. We conduct experiments on real-world datasets from multiple domains and the experimental results validate the effectiveness of the proposed framework.