Goto

Collaborating Authors

 Wang, Zhipeng


A Survey on Robotic Manipulation of Deformable Objects: Recent Advances, Open Challenges and New Frontiers

arXiv.org Artificial Intelligence

Deformable object manipulation (DOM) for robots has a wide range of applications in various fields such as industrial, service and health care sectors. However, compared to manipulation of rigid objects, DOM poses significant challenges for robotic perception, modeling and manipulation, due to the infinite dimensionality of the state space of deformable objects (DOs) and the complexity of their dynamics. The development of computer graphics and machine learning has enabled novel techniques for DOM. These techniques, based on data-driven paradigms, can address some of the challenges that analytical approaches of DOM face. However, some existing reviews do not include all aspects of DOM, and some previous reviews do not summarize data-driven approaches adequately. In this article, we survey more than 150 relevant studies (data-driven approaches mainly) and summarize recent advances, open challenges, and new frontiers for aspects of perception, modeling and manipulation for DOs. Particularly, we summarize initial progress made by Large Language Models (LLMs) in robotic manipulation, and indicates some valuable directions for further research. We believe that integrating data-driven approaches and analytical approaches can provide viable solutions to open challenges of DOM.


Finding emergence in data by maximizing effective information

arXiv.org Artificial Intelligence

Quantifying emergence and modeling emergent dynamics in a data-driven manner for complex dynamical systems is challenging due to the lack of direct observations at the micro-level. Thus, it's crucial to develop a framework to identify emergent phenomena and capture emergent dynamics at the macro-level using available data. Inspired by the theory of causal emergence (CE), this paper introduces a machine learning framework to learn macro-dynamics in an emergent latent space and quantify the degree of CE. The framework maximizes effective information, resulting in a macro-dynamics model with enhanced causal effects. Experimental results on simulated and real data demonstrate the effectiveness of the proposed framework. It quantifies degrees of CE effectively under various conditions and reveals distinct influences of different noise types. It can learn a one-dimensional coarse-grained macro-state from fMRI data, to represent complex neural activities during movie clip viewing. Furthermore, improved generalization to different test environments is observed across all simulation data.


Robot Learning in the Era of Foundation Models: A Survey

arXiv.org Artificial Intelligence

The proliferation of Large Language Models (LLMs) has s fueled a shift in robot learning from automation towards general embodied Artificial Intelligence (AI). Adopting foundation models together with traditional learning methods to robot learning has increasingly gained recent interest research community and showed potential for real-life application. However, there are few literatures comprehensively reviewing the relatively new technologies combined with robotics. The purpose of this review is to systematically assess the state-of-the-art foundation model techniques in the robot learning and to identify future potential areas. Specifically, we first summarized the technical evolution of robot learning and identified the necessary preliminary preparations for foundation models including the simulators, datasets, foundation model framework. In addition, we focused on the following four mainstream areas of robot learning including manipulation, navigation, planning, and reasoning and demonstrated how the foundation model techniques can be adopted in the above scenarios. Furthermore, critical issues which are neglected in the current literatures including robot hardware and software decoupling, dynamic data, generalization performance with the presence of human, etc. were discussed. This review highlights the state-of-the-art progress of foundation models in robot learning and future research should focus on multimodal interaction especially dynamics data, exclusive foundation models for robots, and AI alignment, etc.


zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator. Traditional FL solutions rely on the trust assumption of the centralized aggregator, which forms cohorts of clients in a fair and honest manner. However, a malicious aggregator, in reality, could abandon and replace the client's training models, or launch Sybil attacks to insert fake clients. Such malicious behaviors give the aggregator more power to control clients in the FL setting and determine the final training results. In this work, we introduce zkFL, which leverages zero-knowledge proofs (ZKPs) to tackle the issue of a malicious aggregator during the training model aggregation process. To guarantee the correct aggregation results, the aggregator needs to provide a proof per round. The proof can demonstrate to the clients that the aggregator executes the intended behavior faithfully. To further reduce the verification cost of clients, we employ a blockchain to handle the proof in a zero-knowledge way, where miners (i.e., the nodes validating and maintaining the blockchain data) can verify the proof without knowing the clients' local and aggregated models. The theoretical analysis and empirical results show that zkFL can achieve better security and privacy than traditional FL, without modifying the underlying FL network structure or heavily compromising the training speed.


Interpretable Motion Planner for Urban Driving via Hierarchical Imitation Learning

arXiv.org Artificial Intelligence

Learning-based approaches have achieved remarkable performance in the domain of autonomous driving. Leveraging the impressive ability of neural networks and large amounts of human driving data, complex patterns and rules of driving behavior can be encoded as a model to benefit the autonomous driving system. Besides, an increasing number of data-driven works have been studied in the decision-making and motion planning module. However, the reliability and the stability of the neural network is still full of uncertainty. In this paper, we introduce a hierarchical planning architecture including a high-level grid-based behavior planner and a low-level trajectory planner, which is highly interpretable and controllable. As the high-level planner is responsible for finding a consistent route, the low-level planner generates a feasible trajectory. We evaluate our method both in closed-loop simulation and real world driving, and demonstrate the neural network planner has outstanding performance in complex urban autonomous driving scenarios.


Defending Against Malicious Behaviors in Federated Learning with Blockchain

arXiv.org Artificial Intelligence

In the era of deep learning, federated learning (FL) presents a promising approach that allows multi-institutional data owners, or clients, to collaboratively train machine learning models without compromising data privacy. However, most existing FL approaches rely on a centralized server for global model aggregation, leading to a single point of failure. This makes the system vulnerable to malicious attacks when dealing with dishonest clients. In this work, we address this problem by proposing a secure and reliable FL system based on blockchain and distributed ledger technology. Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors. Both theoretical and empirical analyses are presented to demonstrate the effectiveness of the proposed approach, showing that our framework is robust against malicious client-side behaviors.


Towards Accurate Knowledge Transfer via Target-awareness Representation Disentanglement

arXiv.org Artificial Intelligence

Fine-tuning deep neural networks pre-trained on large scale datasets is one of the most practical transfer learning paradigm given limited quantity of training samples. To obtain better generalization, using the starting point as the reference, either through weights or features, has been successfully applied to transfer learning as a regularizer. However, due to the domain discrepancy between the source and target tasks, there exists obvious risk of negative transfer. In this paper, we propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED), where the relevant knowledge with respect to the target task is disentangled from the original source model and used as a regularizer during fine-tuning the target model. Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average. TRED also outperforms other state-of-the-art transfer learning regularizers such as L2-SP, AT, DELTA and BSS.


Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications

arXiv.org Machine Learning

Density Estimation is one of the central areas of statistics whose purpose is to estimate the probability density function underlying the observed data. It serves as a building block for many tasks in statistical inference, visualization, and machine learning. Density Estimation is widely adopted in the domain of unsupervised learning especially for the application of clustering. As big data become pervasive in almost every area of data sciences, analyzing high-dimensional data that have many features and variables appears to be a major focus in both academia and industry. High-dimensional data pose challenges not only from the theoretical aspects of statistical inference, but also from the algorithmic/computational considerations of machine learning and data analytics. This paper reviews a collection of selected nonparametric density estimation algorithms for high-dimensional data, some of them are recently published and provide interesting mathematical insights. The important application domain of nonparametric density estimation, such as { modal clustering}, are also included in this paper. Several research directions related to density estimation and high-dimensional data analysis are suggested by the authors.