Wang, Zhaowei
AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph
Wang, Zhaowei, Shi, Haochen, Wang, Weiqi, Fang, Tianqing, Zhang, Hongming, Choi, Sehyun, Liu, Xin, Song, Yangqiu
Cognitive research indicates that abstraction ability is essential in human intelligence, which remains under-explored in language models. In this paper, we present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge. While existing resources only touch nouns or verbs within simplified events or specific domains, AbsPyramid collects abstract knowledge for three components of diverse events to comprehensively evaluate the abstraction ability of language models in the open domain. Experimental results demonstrate that current LLMs face challenges comprehending abstraction knowledge in zero-shot and few-shot settings. By training on our rich abstraction knowledge, we find LLMs can acquire basic abstraction abilities and generalize to unseen events. In the meantime, we empirically show that our benchmark is comprehensive to enhance LLMs across two previous abstraction tasks.
Gold: A Global and Local-aware Denoising Framework for Commonsense Knowledge Graph Noise Detection
Deng, Zheye, Wang, Weiqi, Wang, Zhaowei, Liu, Xin, Song, Yangqiu
Commonsense Knowledge Graphs (CSKGs) are crucial for commonsense reasoning, yet constructing them through human annotations can be costly. As a result, various automatic methods have been proposed to construct CSKG with larger semantic coverage. However, these unsupervised approaches introduce spurious noise that can lower the quality of the resulting CSKG, which cannot be tackled easily by existing denoising algorithms due to the unique characteristics of nodes and structures in CSKGs. To address this issue, we propose Gold (Global and Local-aware Denoising), a denoising framework for CSKGs that incorporates entity semantic information, global rules, and local structural information from the CSKG. Experiment results demonstrate that Gold outperforms all baseline methods in noise detection tasks on synthetic noisy CSKG benchmarks. Furthermore, we show that denoising a real-world CSKG is effective and even benefits the downstream zero-shot commonsense question-answering task.
KCTS: Knowledge-Constrained Tree Search Decoding with Token-Level Hallucination Detection
Choi, Sehyun, Fang, Tianqing, Wang, Zhaowei, Song, Yangqiu
Large Language Models (LLMs) have demonstrated remarkable human-level natural language generation capabilities. However, their potential to generate misinformation, often called the hallucination problem, poses a significant risk to their deployment. A common approach to address this issue is to retrieve relevant knowledge and fine-tune the LLM with the knowledge in its input. Unfortunately, this method incurs high training costs and may cause catastrophic forgetting for multi-tasking models. To overcome these limitations, we propose a knowledge-constrained decoding method called KCTS (Knowledge-Constrained Tree Search), which guides a frozen LM to generate text aligned with the reference knowledge at each decoding step using a knowledge classifier score and MCTS (Monte-Carlo Tree Search). To adapt the sequence-level knowledge classifier to token-level guidance, we also propose a novel token-level hallucination detection method called RIPA (Reward Inflection Point Approximation). Our empirical results on knowledge-grounded dialogue and abstractive summarization demonstrate the strength of KCTS as a plug-and-play, model-agnostic decoding method that can effectively reduce hallucinations in natural language generation.
TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining
Zong, Qing, Wang, Zhaowei, Xu, Baixuan, Zheng, Tianshi, Shi, Haochen, Wang, Weiqi, Song, Yangqiu, Wong, Ginny Y., See, Simon
A main goal of Argument Mining (AM) is to analyze an author's stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both text and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.
Getting Sick After Seeing a Doctor? Diagnosing and Mitigating Knowledge Conflicts in Event Temporal Reasoning
Fang, Tianqing, Wang, Zhaowei, Zhou, Wenxuan, Zhang, Hongming, Song, Yangqiu, Chen, Muhao
Event temporal reasoning aims at identifying the temporal relations between two or more events. However, knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model. We first systematically define distinct kinds of bias in event temporal reasoning, which include event relation prior bias, tense bias, narrative bias, and dependency bias, as indicators to study knowledge conflicts. To mitigate such event-related knowledge conflict, we introduce a Counterfactual Data Augmentation based method that can be applied to both Pre-trained Language Models (PLMs) and Large Language Models (LLMs) either as additional training data or demonstrations for In-Context Learning. Experiments suggest the importance of mitigating knowledge conflicts in event temporal reasoning tasks for reducing hallucination and highlight the potential of counterfactual data augmentation for improving model performance.
COLA: Contextualized Commonsense Causal Reasoning from the Causal Inference Perspective
Wang, Zhaowei, Do, Quyet V., Zhang, Hongming, Zhang, Jiayao, Wang, Weiqi, Fang, Tianqing, Song, Yangqiu, Wong, Ginny Y., See, Simon
Detecting commonsense causal relations (causation) between events has long been an essential yet challenging task. Given that events are complicated, an event may have different causes under various contexts. Thus, exploiting context plays an essential role in detecting causal relations. Meanwhile, previous works about commonsense causation only consider two events and ignore their context, simplifying the task formulation. This paper proposes a new task to detect commonsense causation between two events in an event sequence (i.e., context), called contextualized commonsense causal reasoning. We also design a zero-shot framework: COLA (Contextualized Commonsense Causality Reasoner) to solve the task from the causal inference perspective. This framework obtains rich incidental supervision from temporality and balances covariates from multiple timestamps to remove confounding effects. Our extensive experiments show that COLA can detect commonsense causality more accurately than baselines.