Plotting

 Wang, Zhaoqing


OVGaussian: Generalizable 3D Gaussian Segmentation with Open Vocabularies

arXiv.org Artificial Intelligence

Open-vocabulary scene understanding using 3D Gaussian (3DGS) representations has garnered considerable attention. However, existing methods mostly lift knowledge from large 2D vision models into 3DGS on a scene-by-scene basis, restricting the capabilities of open-vocabulary querying within their training scenes so that lacking the generalizability to novel scenes. In this work, we propose \textbf{OVGaussian}, a generalizable \textbf{O}pen-\textbf{V}ocabulary 3D semantic segmentation framework based on the 3D \textbf{Gaussian} representation. We first construct a large-scale 3D scene dataset based on 3DGS, dubbed \textbf{SegGaussian}, which provides detailed semantic and instance annotations for both Gaussian points and multi-view images. To promote semantic generalization across scenes, we introduce Generalizable Semantic Rasterization (GSR), which leverages a 3D neural network to learn and predict the semantic property for each 3D Gaussian point, where the semantic property can be rendered as multi-view consistent 2D semantic maps. In the next, we propose a Cross-modal Consistency Learning (CCL) framework that utilizes open-vocabulary annotations of 2D images and 3D Gaussians within SegGaussian to train the 3D neural network capable of open-vocabulary semantic segmentation across Gaussian-based 3D scenes. Experimental results demonstrate that OVGaussian significantly outperforms baseline methods, exhibiting robust cross-scene, cross-domain, and novel-view generalization capabilities. Code and the SegGaussian dataset will be released. (https://github.com/runnanchen/OVGaussian).


PanoSLAM: Panoptic 3D Scene Reconstruction via Gaussian SLAM

arXiv.org Artificial Intelligence

Understanding geometric, semantic, and instance information in 3D scenes from sequential video data is essential for applications in robotics and augmented reality. However, existing Simultaneous Localization and Mapping (SLAM) methods generally focus on either geometric or semantic reconstruction. In this paper, we introduce PanoSLAM, the first SLAM system to integrate geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation within a unified framework. Our approach builds upon 3D Gaussian Splatting, modified with several critical components to enable efficient rendering of depth, color, semantic, and instance information from arbitrary viewpoints. To achieve panoptic 3D scene reconstruction from sequential RGB-D videos, we propose an online Spatial-Temporal Lifting (STL) module that transfers 2D panoptic predictions from vision models into 3D Gaussian representations. This STL module addresses the challenges of label noise and inconsistencies in 2D predictions by refining the pseudo labels across multi-view inputs, creating a coherent 3D representation that enhances segmentation accuracy. Our experiments show that PanoSLAM outperforms recent semantic SLAM methods in both mapping and tracking accuracy. For the first time, it achieves panoptic 3D reconstruction of open-world environments directly from the RGB-D video. (https://github.com/runnanchen/PanoSLAM)


Open-Vocabulary Segmentation with Unpaired Mask-Text Supervision

arXiv.org Artificial Intelligence

Contemporary cutting-edge open-vocabulary segmentation approaches commonly rely on image-mask-text triplets, yet this restricted annotation is labour-intensive and encounters scalability hurdles in complex real-world scenarios. Although some methods are proposed to reduce the annotation cost with only text supervision, the incompleteness of supervision severely limits the versatility and performance. In this paper, we liberate the strict correspondence between masks and texts by using independent image-mask and image-text pairs, which can be easily collected respectively. With this unpaired mask-text supervision, we propose a new weakly-supervised open-vocabulary segmentation framework (Uni-OVSeg) that leverages confident pairs of mask predictions and entities in text descriptions. Using the independent image-mask and image-text pairs, we predict a set of binary masks and associate them with entities by resorting to the CLIP embedding space. However, the inherent noise in the correspondence between masks and entities poses a significant challenge when obtaining reliable pairs. In light of this, we advocate using the large vision-language model (LVLM) to refine text descriptions and devise a multi-scale ensemble to stablise the matching between masks and entities. Compared to text-only weakly-supervised methods, our Uni-OVSeg achieves substantial improvements of 15.5% mIoU on the ADE20K datasets, and even surpasses fully-supervised methods on the challenging PASCAL Context-459 dataset.


IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models

arXiv.org Artificial Intelligence

In-context learning is a promising paradigm that utilizes in-context examples as prompts for the predictions of large language models. These prompts are crucial for achieving strong performance. However, since the prompts need to be sampled from a large volume of annotated examples, finding the right prompt may result in high annotation costs. To address this challenge, this paper introduces an influence-driven selective annotation method that aims to minimize annotation costs while improving the quality of in-context examples. The essence of our method is to select a pivotal subset from a large-scale unlabeled data pool to annotate for the subsequent sampling of prompts. Specifically, a directed graph is first constructed to represent unlabeled data. Afterward, the influence of candidate unlabeled subsets is quantified with a diffusion process. A simple yet effective greedy algorithm for unlabeled data selection is lastly introduced. It iteratively selects the data if it provides a maximum marginal gain with respect to quantified influence. Compared with previous efforts on selective annotations, our influencedriven method works in an end-to-end manner, avoids an intractable explicit balance between data diversity and representativeness, and enjoys theoretical support. Experiments confirm the superiority of the proposed method on various benchmarks, achieving better performance under lower time consumption during subset selection. The project page is available at https://skzhang1.github.io/IDEAL/. In-context learning (ICL) entails presenting a small set of examples with demonstrations as prompts (called in-context examples) to large language models (LLMs), before making predictions on test inputs (Wei et al., 2022a; Min et al., 2022; Akyürek et al., 2023). This emerging few-shot learning paradigm is an appealing alternative to supervised fine-tuning as it can avoid heavy parameter updates of language models while improving accuracy (Liu et al., 2021; Yoo et al., 2022). Recent studies indicate that obtaining prompts from a vast collection of annotated examples is crucial to achieving strong performance (Rubin et al., 2022). Notably, these studies have illuminated the substantial performance improvements when retrieving analogous examples (under specific embedding criteria) as in-context examples tailored for each individual test input.