Wang, Yuning
A Survey on Datasets for Decision-making of Autonomous Vehicle
Wang, Yuning, Han, Zeyu, Xing, Yining, Xu, Shaobing, Wang, Jianqiang
Autonomous vehicles (AV) are expected to reshape future transportation systems, and decision-making is one of the critical modules toward high-level automated driving. To overcome those complicated scenarios that rule-based methods could not cope with well, data-driven decision-making approaches have aroused more and more focus. The datasets to be used in developing data-driven methods dramatically influences the performance of decision-making, hence it is necessary to have a comprehensive insight into the existing datasets. From the aspects of collection sources, driving data can be divided into vehicle, environment, and driver related data. This study compares the state-of-the-art datasets of these three categories and summarizes their features including sensors used, annotation, and driving scenarios. Based on the characteristics of the datasets, this survey also concludes the potential applications of datasets on various aspects of AV decision-making, assisting researchers to find appropriate ones to support their own research. The future trends of AV dataset development are summarized.
Easy attention: A simple self-attention mechanism for transformer-based time-series reconstruction and prediction
Sanchis-Agudo, Marcial, Wang, Yuning, Guastoni, Luca, Duraisamy, Karthik, Vinuesa, Ricardo
To improve the robustness of transformer neural networks used for temporal-dynamics prediction of chaotic systems, we propose a novel attention mechanism called easy attention which we demonstrate in time-series reconstruction and prediction. As a consequence of the fact that self attention only makes useof the inner product of queries and keys, it is demonstrated that the keys, queries and softmax are not necessary for obtaining the attention score required to capture long-term dependencies in temporal sequences. Through implementing singular-value decomposition (SVD) on the softmax attention score, we further observe that the self attention compresses contribution from both queries and keys in the spanned space of the attention score. Therefore, our proposed easy-attention method directly treats the attention scores as learnable parameters. This approach produces excellent results when reconstructing and predicting the temporal dynamics of chaotic systems exhibiting more robustness and less complexity than the self attention or the widely-used long short-term memory (LSTM) network. Our results show great potential for applications in more complex high-dimensional dynamical systems. Keywords: Machine Learning, Transformer, Self Attention, Koopman Operator, Chaotic System.
A Deep-Learning Method Using Auto-encoder and Generative Adversarial Network for Anomaly Detection on Ancient Stone Stele Surfaces
Liu, Yikun, Wang, Yuning, Liu, Cheng
Accurate detection of natural deterioration and man-made damage on the surfaces of ancient stele in the first instance is essential for their preventive conservation. Existing methods for cultural heritage preservation are not able to achieve this goal perfectly due to the difficulty of balancing accuracy, efficiency, timeliness, and cost. This paper presents a deep-learning method to automatically detect above mentioned emergencies on ancient stone stele in real time, employing autoencoder (AE) and generative adversarial network (GAN). The proposed method overcomes the limitations of existing methods by requiring no extensive anomaly samples while enabling comprehensive detection of unpredictable anomalies. the method includes stages of monitoring, data acquisition, pre-processing, model structuring, and post-processing. Taking the Longmen Grottoes' stone steles as a case study, an unsupervised learning model based on AE and GAN architectures is proposed and validated with a reconstruction accuracy of 99.74\%. The method's evaluation revealed the proficient detection of seven artificially designed anomalies and demonstrated precision and reliability without false alarms. This research provides novel ideas and possibilities for the application of deep learning in the field of cultural heritage.