Wang, Yuanyuan
So2Sat POP -- A Curated Benchmark Data Set for Population Estimation from Space on a Continental Scale
Doda, Sugandha, Wang, Yuanyuan, Kahl, Matthias, Hoffmann, Eike Jens, Ouan, Kim, Taubenböck, Hannes, Zhu, Xiao Xiang
Obtaining a dynamic population distribution is key to many decision-making processes such as urban planning, disaster management and most importantly helping the government to better allocate socio-technical supply. For the aspiration of these objectives, good population data is essential. The traditional method of collecting population data through the census is expensive and tedious. In recent years, statistical and machine learning methods have been developed to estimate population distribution. Most of the methods use data sets that are either developed on a small scale or not publicly available yet. Thus, the development and evaluation of new methods become challenging. We fill this gap by providing a comprehensive data set for population estimation in 98 European cities. The data set comprises a digital elevation model, local climate zone, land use proportions, nighttime lights in combination with multi-spectral Sentinel-2 imagery, and data from the Open Street Map initiative. We anticipate that it would be a valuable addition to the research community for the development of sophisticated approaches in the field of population estimation.
Deep Learning Meets SAR
Zhu, Xiao Xiang, Montazeri, Sina, Ali, Mohsin, Hua, Yuansheng, Wang, Yuanyuan, Mou, Lichao, Shi, Yilei, Xu, Feng, Bamler, Richard
Deep learning in remote sensing has become an international hype, but it is mostly limited to the evaluation of optical data. Although deep learning has been introduced in SAR data processing, despite successful first attempts, its huge potential remains locked. For example, to the best knowledge of the authors, there is no single example of deep learning in SAR that has been developed up to operational processing of big data or integrated into the production chain of any satellite mission. In this paper, we provide an introduction to the most relevant deep learning models and concepts, point out possible pitfalls by analyzing special characteristics of SAR data, review the state-of-the-art of deep learning applied to SAR in depth, summarize available benchmarks, and recommend some important future research directions. With this effort, we hope to stimulate more research in this interesting yet under-exploited research field.
A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
Xiong, Zhaohan, Xia, Qing, Hu, Zhiqiang, Huang, Ning, Bian, Cheng, Zheng, Yefeng, Vesal, Sulaiman, Ravikumar, Nishant, Maier, Andreas, Yang, Xin, Heng, Pheng-Ann, Ni, Dong, Li, Caizi, Tong, Qianqian, Si, Weixin, Puybareau, Elodie, Khoudli, Younes, Geraud, Thierry, Chen, Chen, Bai, Wenjia, Rueckert, Daniel, Xu, Lingchao, Zhuang, Xiahai, Luo, Xinzhe, Jia, Shuman, Sermesant, Maxime, Liu, Yashu, Wang, Kuanquan, Borra, Davide, Masci, Alessandro, Corsi, Cristiana, de Vente, Coen, Veta, Mitko, Karim, Rashed, Preetha, Chandrakanth Jayachandran, Engelhardt, Sandy, Qiao, Menyun, Wang, Yuanyuan, Tao, Qian, Nunez-Garcia, Marta, Camara, Oscar, Savioli, Nicolo, Lamata, Pablo, Zhao, Jichao
Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.