Not enough data to create a plot.
Try a different view from the menu above.
Wang, Yongjie
A Survey on Natural Language Counterfactual Generation
Wang, Yongjie, Qiu, Xiaoqi, Yue, Yu, Guo, Xu, Zeng, Zhiwei, Feng, Yuhong, Shen, Zhiqi
Natural Language Counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class. The generated counterfactuals provide insight into the reasoning behind a model's predictions by highlighting which words significantly influence the outcomes. Additionally, they can be used to detect model fairness issues or augment the training data to enhance the model's robustness. A substantial amount of research has been conducted to generate counterfactuals for various NLP tasks, employing different models and methodologies. With the rapid growth of studies in this field, a systematic review is crucial to guide future researchers and developers. To bridge this gap, this survey comprehensively overview textual counterfactual generation methods, particularly including those based on Large Language Models. We propose a new taxonomy that categorizes the generation methods into four groups and systematically summarize the metrics for evaluating the generation quality. Finally, we discuss ongoing research challenges and outline promising directions for future work.
PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning
Qiu, Xiaoqi, Wang, Yongjie, Guo, Xu, Zeng, Zhiwei, Yu, Yue, Feng, Yuhong, Miao, Chunyan
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes. Training with CAD enhances model robustness against spurious features that happen to correlate with labels by spreading the casual relationships across different classes. Yet, recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information, inadvertently introducing biases that may impair performance on out-ofdistribution (OOD) datasets. To mitigate this issue, we employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues. We theoretically prove that contrastive loss can encourage models to leverage a broader range of features beyond those modified ones. Comprehensive experiments on two human-edited CAD datasets demonstrate that our proposed method outperforms the state-of-the-art on OOD datasets.
Gradient based Feature Attribution in Explainable AI: A Technical Review
Wang, Yongjie, Zhang, Tong, Guo, Xu, Shen, Zhiqi
The surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability, especially in high-stakes applications, such as healthcare and autonomous driving. Due to the lack of a rigorous definition of explainable AI (XAI), a plethora of research related to explainability, interpretability, and transparency has been developed to explain and analyze the model from various perspectives. Consequently, with an exhaustive list of papers, it becomes challenging to have a comprehensive overview of XAI research from all aspects. Considering the popularity of neural networks in AI research, we narrow our focus to a specific area of XAI research: gradient based explanations, which can be directly adopted for neural network models. In this review, we systematically explore gradient based explanation methods to date and introduce a novel taxonomy to categorize them into four distinct classes. Then, we present the essence of technique details in chronological order and underscore the evolution of algorithms. Next, we introduce both human and quantitative evaluations to measure algorithm performance. More importantly, we demonstrate the general challenges in XAI and specific challenges in gradient based explanations. We hope that this survey can help researchers understand state-of-the-art progress and their corresponding disadvantages, which could spark their interest in addressing these issues in future work.
Flexible and Robust Counterfactual Explanations with Minimal Satisfiable Perturbations
Wang, Yongjie, Qian, Hangwei, Liu, Yongjie, Guo, Wei, Miao, Chunyan
Counterfactual explanations (CFEs) exemplify how to minimally modify a feature vector to achieve a different prediction for an instance. CFEs can enhance informational fairness and trustworthiness, and provide suggestions for users who receive adverse predictions. However, recent research has shown that multiple CFEs can be offered for the same instance or instances with slight differences. Multiple CFEs provide flexible choices and cover diverse desiderata for user selection. However, individual fairness and model reliability will be damaged if unstable CFEs with different costs are returned. Existing methods fail to exploit flexibility and address the concerns of non-robustness simultaneously. To address these issues, we propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP). Specifically, CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges. For efficiency, we model the problem as a Boolean satisfiability problem to modify as few features as possible. Additionally, CEMSP is a general framework and can easily accommodate more practical requirements, e.g., casualty and actionability. Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.
Explaining Language Models' Predictions with High-Impact Concepts
Zhao, Ruochen, Joty, Shafiq, Wang, Yongjie, Wang, Tan
The emergence of large-scale pretrained language models has posed unprecedented challenges in deriving explanations of why the model has made some predictions. Stemmed from the compositional nature of languages, spurious correlations have further undermined the trustworthiness of NLP systems, leading to unreliable model explanations that are merely correlated with the output predictions. To encourage fairness and transparency, there exists an urgent demand for reliable explanations that allow users to consistently understand the model's behavior. In this work, we propose a complete framework for extending concept-based interpretability methods to NLP. Specifically, we propose a post-hoc interpretability method for extracting predictive high-level features (concepts) from the pretrained model's hidden layer activations. We optimize for features whose existence causes the output predictions to change substantially, \ie generates a high impact. Moreover, we devise several evaluation metrics that can be universally applied. Extensive experiments on real and synthetic tasks demonstrate that our method achieves superior results on {predictive impact}, usability, and faithfulness compared to the baselines.