Wang, Yong
Speech Swin-Transformer: Exploring a Hierarchical Transformer with Shifted Windows for Speech Emotion Recognition
Wang, Yong, Lu, Cheng, Lian, Hailun, Zhao, Yan, Schuller, Björn, Zong, Yuan, Zheng, Wenming
Swin-Transformer has demonstrated remarkable success in computer vision by leveraging its hierarchical feature representation based on Transformer. In speech signals, emotional information is distributed across different scales of speech features, e.\,g., word, phrase, and utterance. Drawing above inspiration, this paper presents a hierarchical speech Transformer with shifted windows to aggregate multi-scale emotion features for speech emotion recognition (SER), called Speech Swin-Transformer. Specifically, we first divide the speech spectrogram into segment-level patches in the time domain, composed of multiple frame patches. These segment-level patches are then encoded using a stack of Swin blocks, in which a local window Transformer is utilized to explore local inter-frame emotional information across frame patches of each segment patch. After that, we also design a shifted window Transformer to compensate for patch correlations near the boundaries of segment patches. Finally, we employ a patch merging operation to aggregate segment-level emotional features for hierarchical speech representation by expanding the receptive field of Transformer from frame-level to segment-level. Experimental results demonstrate that our proposed Speech Swin-Transformer outperforms the state-of-the-art methods.
Agent-Aware Training for Agent-Agnostic Action Advising in Deep Reinforcement Learning
Wei, Yaoquan, Liu, Shunyu, Song, Jie, Zheng, Tongya, Chen, Kaixuan, Wang, Yong, Song, Mingli
Action advising endeavors to leverage supplementary guidance from expert teachers to alleviate the issue of sampling inefficiency in Deep Reinforcement Learning (DRL). Previous agent-specific action advising methods are hindered by imperfections in the agent itself, while agent-agnostic approaches exhibit limited adaptability to the learning agent. In this study, we propose a novel framework called Agent-Aware trAining yet Agent-Agnostic Action Advising (A7) to strike a balance between the two. The underlying concept of A7 revolves around utilizing the similarity of state features as an indicator for soliciting advice. However, unlike prior methodologies, the measurement of state feature similarity is performed by neither the error-prone learning agent nor the agent-agnostic advisor. Instead, we employ a proxy model to extract state features that are both discriminative (adaptive to the agent) and generally applicable (robust to agent noise). Furthermore, we utilize behavior cloning to train a model for reusing advice and introduce an intrinsic reward for the advised samples to incentivize the utilization of expert guidance. Experiments are conducted on the GridWorld, LunarLander, and six prominent scenarios from Atari games. The results demonstrate that A7 significantly accelerates the learning process and surpasses existing methods (both agent-specific and agent-agnostic) by a substantial margin. Our code will be made publicly available.
A practical PINN framework for multi-scale problems with multi-magnitude loss terms
Wang, Yong, Yao, Yanzhong, Guo, Jiawei, Gao, Zhiming
For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.
Vector Autoregressive Evolution for Dynamic Multi-Objective Optimisation
Jiang, Shouyong, Wang, Yong, Hu, Yaru, Zhang, Qingyang, Yang, Shengxiang
Dynamic multi-objective optimisation (DMO) handles optimisation problems with multiple (often conflicting) objectives in varying environments. Such problems pose various challenges to evolutionary algorithms, which have popularly been used to solve complex optimisation problems, due to their dynamic nature and resource restrictions in changing environments. This paper proposes vector autoregressive evolution (VARE) consisting of vector autoregression (VAR) and environment-aware hypermutation to address environmental changes in DMO. VARE builds a VAR model that considers mutual relationship between decision variables to effectively predict the moving solutions in dynamic environments. Additionally, VARE introduces EAH to address the blindness of existing hypermutation strategies in increasing population diversity in dynamic scenarios where predictive approaches are unsuitable. A seamless integration of VAR and EAH in an environment-adaptive manner makes VARE effective to handle a wide range of dynamic environments and competitive with several popular DMO algorithms, as demonstrated in extensive experimental studies. Specially, the proposed algorithm is computationally 50 times faster than two widely-used algorithms (i.e., TrDMOEA and MOEA/D-SVR) while producing significantly better results.
LLM4Vis: Explainable Visualization Recommendation using ChatGPT
Wang, Lei, Zhang, Songheng, Wang, Yun, Lim, Ee-Peng, Wang, Yong
Data visualization is a powerful tool for exploring and communicating insights in various domains. To automate visualization choice for datasets, a task known as visualization recommendation has been proposed. Various machine-learning-based approaches have been developed for this purpose, but they often require a large corpus of dataset-visualization pairs for training and lack natural explanations for their results. To address this research gap, we propose LLM4Vis, a novel ChatGPT-based prompting approach to perform visualization recommendation and return human-like explanations using very few demonstration examples. Our approach involves feature description, demonstration example selection, explanation generation, demonstration example construction, and inference steps. To obtain demonstration examples with high-quality explanations, we propose a new explanation generation bootstrapping to iteratively refine generated explanations by considering the previous generation and template-based hint. Evaluations on the VizML dataset show that LLM4Vis outperforms or performs similarly to supervised learning models like Random Forest, Decision Tree, and MLP in both few-shot and zero-shot settings. The qualitative evaluation also shows the effectiveness of explanations generated by LLM4Vis. We make our code publicly available at \href{https://github.com/demoleiwang/LLM4Vis}{https://github.com/demoleiwang/LLM4Vis}.
From Asset Flow to Status, Action and Intention Discovery: Early Malice Detection in Cryptocurrency
Cheng, Ling, Zhu, Feida, Wang, Yong, Liang, Ruicheng, Liu, Huiwen
Cryptocurrency has been subject to illicit activities probably more often than traditional financial assets due to the pseudo-anonymous nature of its transacting entities. An ideal detection model is expected to achieve all three critical properties of (I) early detection, (II) good interpretability, and (III) versatility for various illicit activities. However, existing solutions cannot meet all these requirements, as most of them heavily rely on deep learning without interpretability and are only available for retrospective analysis of a specific illicit type. To tackle all these challenges, we propose Intention-Monitor for early malice detection in Bitcoin (BTC), where the on-chain record data for a certain address are much scarcer than other cryptocurrency platforms. We first define asset transfer paths with the Decision-Tree based feature Selection and Complement (DT-SC) to build different feature sets for different malice types. Then, the Status/Action Proposal Module (S/A-PM) and the Intention-VAE module generate the status, action, intent-snippet, and hidden intent-snippet embedding. With all these modules, our model is highly interpretable and can detect various illegal activities. Moreover, well-designed loss functions further enhance the prediction speed and model's interpretability. Extensive experiments on three real-world datasets demonstrate that our proposed algorithm outperforms the state-of-the-art methods. Furthermore, additional case studies justify our model can not only explain existing illicit patterns but can also find new suspicious characters.
Double-chain Constraints for 3D Human Pose Estimation in Images and Videos
Kang, Hongbo, Wang, Yong, Liu, Mengyuan, Wu, Doudou, Liu, Peng, Yang, Wenming
Reconstructing 3D poses from 2D poses lacking depth information is particularly challenging due to the complexity and diversity of human motion. The key is to effectively model the spatial constraints between joints to leverage their inherent dependencies. Thus, we propose a novel model, called Double-chain Graph Convolutional Transformer (DC-GCT), to constrain the pose through a double-chain design consisting of local-to-global and global-to-local chains to obtain a complex representation more suitable for the current human pose. Specifically, we combine the advantages of GCN and Transformer and design a Local Constraint Module (LCM) based on GCN and a Global Constraint Module (GCM) based on self-attention mechanism as well as a Feature Interaction Module (FIM). The proposed method fully captures the multi-level dependencies between human body joints to optimize the modeling capability of the model. Moreover, we propose a method to use temporal information into the single-frame model by guiding the video sequence embedding through the joint embedding of the target frame, with negligible increase in computational cost. Experimental results demonstrate that DC-GCT achieves state-of-the-art performance on two challenging datasets (Human3.6M and MPI-INF-3DHP). Notably, our model achieves state-of-the-art performance on all action categories in the Human3.6M dataset using detected 2D poses from CPN, and our code is available at: https://github.com/KHB1698/DC-GCT.
REAL: A Representative Error-Driven Approach for Active Learning
Chen, Cheng, Wang, Yong, Liao, Lizi, Chen, Yueguo, Du, Xiaoyong
Given a limited labeling budget, active learning (al) aims to sample the most informative instances from an unlabeled pool to acquire labels for subsequent model training. To achieve this, al typically measures the informativeness of unlabeled instances based on uncertainty and diversity. However, it does not consider erroneous instances with their neighborhood error density, which have great potential to improve the model performance. To address this limitation, we propose Real, a novel approach to select data instances with Representative Errors for Active Learning. It identifies minority predictions as pseudo errors within a cluster and allocates an adaptive sampling budget for the cluster based on estimated error density. Extensive experiments on five text classification datasets demonstrate that Real consistently outperforms all best-performing baselines regarding accuracy and F1-macro scores across a wide range of hyperparameter settings. Our analysis also shows that Real selects the most representative pseudo errors that match the distribution of ground-truth errors along the decision boundary.
Evolve Path Tracer: Early Detection of Malicious Addresses in Cryptocurrency
Cheng, Ling, Zhu, Feida, Wang, Yong, Liang, Ruicheng, Liu, Huiwen
With the ever-increasing boom of Cryptocurrency, detecting fraudulent behaviors and associated malicious addresses draws significant research effort. However, most existing studies still rely on the full history features or full-fledged address transaction networks, thus cannot meet the requirements of early malicious address detection, which is urgent but seldom discussed by existing studies. To detect fraud behaviors of malicious addresses in the early stage, we present Evolve Path Tracer, which consists of Evolve Path Encoder LSTM, Evolve Path Graph GCN, and Hierarchical Survival Predictor. Specifically, in addition to the general address features, we propose asset transfer paths and corresponding path graphs to characterize early transaction patterns. Further, since the transaction patterns are changing rapidly during the early stage, we propose Evolve Path Encoder LSTM and Evolve Path Graph GCN to encode asset transfer path and path graph under an evolving structure setting. Hierarchical Survival Predictor then predicts addresses' labels with nice scalability and faster prediction speed. We investigate the effectiveness and versatility of Evolve Path Tracer on three real-world illicit bitcoin datasets. Our experimental results demonstrate that Evolve Path Tracer outperforms the state-of-the-art methods. Extensive scalability experiments demonstrate the model's adaptivity under a dynamic prediction setting.
Intelligent multicast routing method based on multi-agent deep reinforcement learning in SDWN
Hu, Hongwen, Ye, Miao, Zhao, Chenwei, Jiang, Qiuxiang, Wang, Yong, Qiu, Hongbing, Deng, Xiaofang
Multicast communication technology is widely applied in wireless environments with a high device density. Traditional wireless network architectures have difficulty flexibly obtaining and maintaining global network state information and cannot quickly respond to network state changes, thus affecting the throughput, delay, and other QoS requirements of existing multicasting solutions. Therefore, this paper proposes a new multicast routing method based on multiagent deep reinforcement learning (MADRL-MR) in a software-defined wireless networking (SDWN) environment. First, SDWN technology is adopted to flexibly configure the network and obtain network state information in the form of traffic matrices representing global network links information, such as link bandwidth, delay, and packet loss rate. Second, the multicast routing problem is divided into multiple subproblems, which are solved through multiagent cooperation. To enable each agent to accurately understand the current network state and the status of multicast tree construction, the state space of each agent is designed based on the traffic and multicast tree status matrices, and the set of AP nodes in the network is used as the action space. A novel single-hop action strategy is designed, along with a reward function based on the four states that may occur during tree construction: progress, invalid, loop, and termination. Finally, a decentralized training approach is combined with transfer learning to enable each agent to quickly adapt to dynamic network changes and accelerate convergence. Simulation experiments show that MADRL-MR outperforms existing algorithms in terms of throughput, delay, packet loss rate, etc., and can establish more intelligent multicast routes.