Wang, Yidong
KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models
Yu, Zhuohao, Gao, Chang, Yao, Wenjin, Wang, Yidong, Ye, Wei, Wang, Jindong, Xie, Xing, Zhang, Yue, Zhang, Shikun
Automatic evaluation methods for large language models (LLMs) are hindered by data contamination, leading to inflated assessments of their effectiveness. Existing strategies, which aim to detect contaminated texts, focus on quantifying contamination status instead of accurately gauging model performance. In this paper, we introduce KIEval, a Knowledge-grounded Interactive Evaluation framework, which incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation. Starting with a question in a conventional LLM benchmark involving domain-specific knowledge, KIEval utilizes dynamically generated, multi-round, and knowledge-focused dialogues to determine whether a model's response is merely a recall of benchmark answers or demonstrates a deep comprehension to apply knowledge in more complex conversations. Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization. We also reveal that data contamination brings no contribution or even negative effect to models' real-world applicability and understanding, and existing contamination detection methods for LLMs can only identify contamination in pre-training but not during supervised fine-tuning.
FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
Yu, Zhuohao, Gao, Chang, Yao, Wenjin, Wang, Yidong, Zeng, Zhengran, Ye, Wei, Wang, Jindong, Zhang, Yue, Zhang, Shikun
The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.
A General Framework for Learning from Weak Supervision
Chen, Hao, Wang, Jindong, Feng, Lei, Li, Xiang, Wang, Yidong, Xie, Xing, Sugiyama, Masashi, Singh, Rita, Raj, Bhiksha
Weakly supervised learning generally faces challenges in applicability to various scenarios with diverse weak supervision and in scalability due to the complexity of existing algorithms, thereby hindering the practical deployment. This paper introduces a general framework for learning from weak supervision (GLWS) with a novel algorithm. Central to GLWS is an Expectation-Maximization (EM) formulation, adeptly accommodating various weak supervision sources, including instance partial labels, aggregate statistics, pairwise observations, and unlabeled data. We further present an advanced algorithm that significantly simplifies the EM computational demands using a Non-deterministic Finite Automaton (NFA) along with a forward-backward algorithm, which effectively reduces time complexity from quadratic or factorial often required in existing solutions to linear scale. The problem of learning from arbitrary weak supervision is therefore converted to the NFA modeling of them. GLWS not only enhances the scalability of machine learning models but also demonstrates superior performance and versatility across 11 weak supervision scenarios. We hope our work paves the way for further advancements and practical deployment in this field.
Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution
Lu, Wang, Wang, Jindong, Wang, Yidong, Xie, Xing
The distribution shifts between training and test data typically undermine the performance of models. In recent years, lots of work pays attention to domain generalization (DG) where distribution shifts exist, and target data are unseen. Despite the progress in algorithm design, two foundational factors have long been ignored: 1) the optimization for regularization-based objectives, and 2) the model selection for DG since no knowledge about the target domain can be utilized. In this paper, we propose Mixup guided optimization and selection techniques for DG. For optimization, we utilize an adapted Mixup to generate an out-of-distribution dataset that can guide the preference direction and optimize with Pareto optimization. For model selection, we generate a validation dataset with a closer distance to the target distribution, and thereby it can better represent the target data. We also present some theoretical insights behind our proposals. Comprehensive experiments demonstrate that our model optimization and selection techniques can largely improve the performance of existing domain generalization algorithms and even achieve new state-of-the-art results.
A Survey on Evaluation of Large Language Models
Chang, Yupeng, Wang, Xu, Wang, Jindong, Wu, Yuan, Yang, Linyi, Zhu, Kaijie, Chen, Hao, Yi, Xiaoyuan, Wang, Cunxiang, Wang, Yidong, Ye, Wei, Zhang, Yue, Chang, Yi, Yu, Philip S., Yang, Qiang, Xie, Xing
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
Supervised Knowledge Makes Large Language Models Better In-context Learners
Yang, Linyi, Zhang, Shuibai, Yu, Zhuohao, Bao, Guangsheng, Wang, Yidong, Wang, Jindong, Xu, Ruochen, Ye, Wei, Xie, Xing, Chen, Weizhu, Zhang, Yue
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-Specific finetuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs. Trained on extensive volumes of data with numerous parameters, large language models (LLMs) have garnered significant performance across diverse tasks. Their in-context learning (ICL) ability positions them as foundational models to adeptly address various downstream tasks, ranging from natural language understanding (Chowdhery et al., 2022; OpenAI, 2023a;b) to reasoning (Wei et al., 2022; O'Brien & Lewis, 2023), and planning (Shen et al., 2023). Despite their robust performance, LLMs come with their own set of challenges; they demand substantial resources for training and deployment, demonstrate slow inference times, and are susceptible to hallucination (Li et al., 2023a).
Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity
Wang, Cunxiang, Liu, Xiaoze, Yue, Yuanhao, Tang, Xiangru, Zhang, Tianhang, Jiayang, Cheng, Yao, Yunzhi, Gao, Wenyang, Hu, Xuming, Qi, Zehan, Wang, Yidong, Yang, Linyi, Wang, Jindong, Xie, Xing, Zhang, Zheng, Zhang, Yue
This survey addresses the crucial issue of factuality in Large Language Models (LLMs). As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital. We define the Factuality Issue as the probability of LLMs to produce content inconsistent with established facts. We first delve into the implications of these inaccuracies, highlighting the potential consequences and challenges posed by factual errors in LLM outputs. Subsequently, we analyze the mechanisms through which LLMs store and process facts, seeking the primary causes of factual errors. Our discussion then transitions to methodologies for evaluating LLM factuality, emphasizing key metrics, benchmarks, and studies. We further explore strategies for enhancing LLM factuality, including approaches tailored for specific domains. We focus two primary LLM configurations standalone LLMs and Retrieval-Augmented LLMs that utilizes external data, we detail their unique challenges and potential enhancements. Our survey offers a structured guide for researchers aiming to fortify the factual reliability of LLMs.
Evaluating Open-QA Evaluation
Wang, Cunxiang, Cheng, Sirui, Guo, Qipeng, Yue, Yuanhao, Ding, Bowen, Xu, Zhikun, Wang, Yidong, Hu, Xiangkun, Zhang, Zheng, Zhang, Yue
This study focuses on the evaluation of the Open Question Answering (Open-QA) task, which can directly estimate the factuality of large language models (LLMs). Current automatic evaluation methods have shown limitations, indicating that human evaluation still remains the most reliable approach. We introduce a new task, Evaluating QA Evaluation (QA-Eval) and the corresponding dataset EVOUNA, designed to assess the accuracy of AI-generated answers in relation to standard answers within Open-QA. Our evaluation of these methods utilizes human-annotated results to measure their performance. Specifically, the work investigates methods that show high correlation with human evaluations, deeming them more reliable. We also discuss the pitfalls of current methods and methods to improve LLM-based evaluators. We believe this new QA-Eval task and corresponding dataset EVOUNA will facilitate the development of more effective automatic evaluation tools and prove valuable for future research in this area. All resources are available at \url{https://github.com/wangcunxiang/QA-Eval} and it is under the Apache-2.0 License.
PromptBench: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts
Zhu, Kaijie, Wang, Jindong, Zhou, Jiaheng, Wang, Zichen, Chen, Hao, Wang, Yidong, Yang, Linyi, Ye, Wei, Zhang, Yue, Gong, Neil Zhenqiang, Xie, Xing
The increasing reliance on Large Language Models (LLMs) across academia and industry necessitates a comprehensive understanding of their robustness to prompts. In response to this vital need, we introduce PromptBench, a robustness benchmark designed to measure LLMs' resilience to adversarial prompts. This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic. The adversarial prompts, crafted to mimic plausible user errors like typos or synonyms, aim to evaluate how slight deviations can affect LLM outcomes while maintaining semantic integrity. These prompts are then employed in diverse tasks, such as sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving. Our study generates 4788 adversarial prompts, meticulously evaluated over 8 tasks and 13 datasets. Our findings demonstrate that contemporary LLMs are not robust to adversarial prompts. Furthermore, we present comprehensive analysis to understand the mystery behind prompt robustness and its transferability. We then offer insightful robustness analysis and pragmatic recommendations for prompt composition, beneficial to both researchers and everyday users. Code is available at: https://github.com/microsoft/promptbench.
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Chen, Hao, Shah, Ankit, Wang, Jindong, Tao, Ran, Wang, Yidong, Xie, Xing, Sugiyama, Masashi, Singh, Rita, Raj, Bhiksha
Learning with reduced labeling standards, such as noisy label, partial label, and multiple label candidates, which we generically refer to as \textit{imprecise} labels, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables.Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.