Not enough data to create a plot.
Try a different view from the menu above.
Wang, Yichen
The Cost of Privacy in Generalized Linear Models: Algorithms and Minimax Lower Bounds
Cai, T. Tony, Wang, Yichen, Zhang, Linjun
The trade-off between differential privacy and statistical accuracy in generalized linear models (GLMs) is studied. We propose differentially private algorithms for parameter estimation in both low-dimensional and high-dimensional sparse GLMs and characterize their statistical performance. We establish privacy-constrained minimax lower bounds for GLMs, which imply that the proposed algorithms are rate-optimal up to logarithmic factors in sample size. The lower bounds are obtained via a novel technique, which is based on Stein's Lemma and generalizes the tracing attack technique for privacy-constrained lower bounds. This lower bound argument can be of independent interest as it is applicable to general parametric models. Simulated and real data experiments are conducted to demonstrate the numerical performance of our algorithms.
Predicting User Activity Level In Point Processes With Mass Transport Equation
Wang, Yichen, Ye, Xiaojing, Zha, Hongyuan, Song, Le
Point processes are powerful tools to model user activities and have a plethora of applications in social sciences. Predicting user activities based on point processes is a central problem. However, existing works are mostly problem specific, use heuristics, or simplify the stochastic nature of point processes. In this paper, we propose a framework that provides an unbiased estimator of the probability mass function of point processes. In particular, we design a key reformulation of the prediction problem, and further derive a differential-difference equation to compute a conditional probability mass function.
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
Cai, T. Tony, Wang, Yichen, Zhang, Linjun
Privacy-preserving data analysis is a rising challenge in contemporary statistics, as the privacy guarantees of statistical methods are often achieved at the expense of accuracy. In this paper, we investigate the tradeoff between statistical accuracy and privacy in mean estimation and linear regression, under both the classical low-dimensional and modern high-dimensional settings. A primary focus is to establish minimax optimality for statistical estimation with the $(\varepsilon,\delta)$-differential privacy constraint. To this end, we find that classical lower bound arguments fail to yield sharp results, and new technical tools are called for. We first develop a general lower bound argument for estimation problems with differential privacy constraints, and then apply the lower bound argument to mean estimation and linear regression. For these statistical problems, we also design computationally efficient algorithms that match the minimax lower bound up to a logarithmic factor. In particular, for the high-dimensional linear regression, a novel private iterative hard thresholding pursuit algorithm is proposed, based on a privately truncated version of stochastic gradient descent. The numerical performance of these algorithms is demonstrated by simulation studies and applications to real data containing sensitive information, for which privacy-preserving statistical methods are necessary.
Learning to Optimize via Wasserstein Deep Inverse Optimal Control
Wang, Yichen, Song, Le, Zha, Hongyuan
We study the inverse optimal control problem in social sciences: we aim at learning a user's true cost function from the observed temporal behavior. In contrast to traditional phenomenological works that aim to learn a generative model to fit the behavioral data, we propose a novel variational principle and treat user as a reinforcement learning algorithm, which acts by optimizing his cost function. We first propose a unified KL framework that generalizes existing maximum entropy inverse optimal control methods. We further propose a two-step Wasserstein inverse optimal control framework. In the first step, we compute the optimal measure with a novel mass transport equation. In the second step, we formulate the learning problem as a generative adversarial network. In two real world experiments - recommender systems and social networks, we show that our framework obtains significant performance gains over both existing inverse optimal control methods and point process based generative models.
Predicting User Activity Level In Point Processes With Mass Transport Equation
Wang, Yichen, Ye, Xiaojing, Zha, Hongyuan, Song, Le
Point processes are powerful tools to model user activities and have a plethora of applications in social sciences. Predicting user activities based on point processes is a central problem. However, existing works are mostly problem specific, use heuristics, or simplify the stochastic nature of point processes. In this paper, we propose a framework that provides an unbiased estimator of the probability mass function of point processes. In particular, we design a key reformulation of the prediction problem, and further derive a differential-difference equation to compute a conditional probability mass function. Our framework is applicable to general point processes and prediction tasks, and achieves superb predictive and efficiency performance in diverse real-world applications compared to state-of-arts.
Coevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions
Wang, Yichen, Du, Nan, Trivedi, Rakshit, Song, Le
Matching users to the right items at the right time is a fundamental task in recommendation systems. As users interact with different items over time, users' and items' feature may evolve and co-evolve over time. Traditional models based on static latent features or discretizing time into epochs can become ineffective for capturing the fine-grained temporal dynamics in the user-item interactions. We propose a coevolutionary latent feature process model that accurately captures the coevolving nature of users' and items' feature. To learn parameters, we design an efficient convex optimization algorithm with a novel low rank space sharing constraints. Extensive experiments on diverse real-world datasets demonstrate significant improvements in user behavior prediction compared to state-of-the-arts.
Fast and Simple Optimization for Poisson Likelihood Models
He, Niao, Harchaoui, Zaid, Wang, Yichen, Song, Le
Poisson likelihood models have been prevalently used in imaging, social networks, and time series analysis. We propose fast, simple, theoretically-grounded, and versatile, optimization algorithms for Poisson likelihood modeling. The Poisson log-likelihood is concave but not Lipschitz-continuous. Since almost all gradient-based optimization algorithms rely on Lipschitz-continuity, optimizing Poisson likelihood models with a guarantee of convergence can be challenging, especially for large-scale problems. We present a new perspective allowing to efficiently optimize a wide range of penalized Poisson likelihood objectives. We show that an appropriate saddle point reformulation enjoys a favorable geometry and a smooth structure. Therefore, we can design a new gradient-based optimization algorithm with $O(1/t)$ convergence rate, in contrast to the usual $O(1/\sqrt{t})$ rate of non-smooth minimization alternatives. Furthermore, in order to tackle problems with large samples, we also develop a randomized block-decomposition variant that enjoys the same convergence rate yet more efficient iteration cost. Experimental results on several point process applications including social network estimation and temporal recommendation show that the proposed algorithm and its randomized block variant outperform existing methods both on synthetic and real-world datasets.
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution
Farajtabar, Mehrdad, Wang, Yichen, Rodriguez, Manuel Gomez, Li, Shuang, Zha, Hongyuan, Song, Le
Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes, information diffusion and network evolution, have been predominantly studied separately, ignoring their co-evolutionary dynamics. We propose a temporal point process model, COEVOLVE, for such joint dynamics, allowing the intensity of one process to be modulated by that of the other. This model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. Furthermore, we also develop a convex optimization framework to learn the parameters of the model from historical diffusion and network evolution traces. We experimented with both synthetic data and data gathered from Twitter, and show that our model provides a good fit to the data as well as more accurate predictions than alternatives.
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution
Farajtabar, Mehrdad, Wang, Yichen, Rodriguez, Manuel Gomez, Li, Shuang, Zha, Hongyuan, Song, Le
Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes, information diffusion and network evolution, have been predominantly studied separately, ignoring their co-evolutionary dynamics.We propose a temporal point process model, COEVOLVE, for such joint dynamics, allowing the intensity of one process to be modulated by that of the other. This model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. Furthermore, we also develop a convex optimization framework to learn the parameters of the model from historical diffusion and network evolution traces. We experimented with both synthetic data and data gathered from Twitter, and show that our model provides a good fit to the data as well as more accurate predictions than alternatives.
Time-Sensitive Recommendation From Recurrent User Activities
Du, Nan, Wang, Yichen, He, Niao, Sun, Jimeng, Song, Le
By making personalized suggestions, a recommender system is playing a crucial role in improving the engagement of users in modern web-services. However, most recommendation algorithms do not explicitly take into account the temporal behavior and the recurrent activities of users. Two central but less explored questions are how to recommend the most desirable item \emph{at the right moment}, and how to predict \emph{the next returning time} of a user to a service. To address these questions, we propose a novel framework which connects self-exciting point processes and low-rank models to capture the recurrent temporal patterns in a large collection of user-item consumption pairs. We show that the parameters of the model can be estimated via a convex optimization, and furthermore, we develop an efficient algorithm that maintains $O(1 / \epsilon)$ convergence rate, scales up to problems with millions of user-item pairs and thousands of millions of temporal events. Compared to other state-of-the-arts in both synthetic and real datasets, our model achieves superb predictive performance in the two time-sensitive recommendation questions. Finally, we point out that our formulation can incorporate other extra context information of users, such as profile, textual and spatial features.