Goto

Collaborating Authors

 Wang, Yaohui


Self-Supervised Video Representation Learning via Latent Time Navigation

arXiv.org Artificial Intelligence

Self-supervised video representation learning aimed at maximizing similarity between different temporal segments of one video, in order to enforce feature persistence over time. This leads to loss of pertinent information related to temporal relationships, rendering actions such as `enter' and `leave' to be indistinguishable. To mitigate this limitation, we propose Latent Time Navigation (LTN), a time-parameterized contrastive learning strategy that is streamlined to capture fine-grained motions. Specifically, we maximize the representation similarity between different video segments from one video, while maintaining their representations time-aware along a subspace of the latent representation code including an orthogonal basis to represent temporal changes. Our extensive experimental analysis suggests that learning video representations by LTN consistently improves performance of action classification in fine-grained and human-oriented tasks (e.g., on Toyota Smarthome dataset). In addition, we demonstrate that our proposed model, when pre-trained on Kinetics-400, generalizes well onto the unseen real world video benchmark datasets UCF101 and HMDB51, achieving state-of-the-art performance in action recognition.


Hierarchical Diffusion Autoencoders and Disentangled Image Manipulation

arXiv.org Artificial Intelligence

Diffusion models have attained impressive visual quality for image synthesis. However, how to interpret and manipulate the latent space of diffusion models has not been extensively explored. Prior work diffusion autoencoders encode the semantic representations into a semantic latent code, which fails to reflect the rich information of details and the intrinsic feature hierarchy. To mitigate those limitations, we propose Hierarchical Diffusion Autoencoders (HDAE) that exploit the fine-grained-to-abstract and lowlevel-to-high-level feature hierarchy for the latent space of diffusion models. The hierarchical latent space of HDAE inherently encodes different abstract levels of semantics and provides more comprehensive semantic representations. In addition, we propose a truncated-feature-based approach for disentangled image manipulation. We demonstrate the effectiveness of our proposed approach with extensive experiments and applications on image reconstruction, style mixing, controllable interpolation, detail-preserving and disentangled image manipulation, and multi-modal semantic image synthesis.