Not enough data to create a plot.
Try a different view from the menu above.
Wang, Yanzhi
Security Analysis and Enhancement of Model Compressed Deep Learning Systems under Adversarial Attacks
Liu, Qi, Liu, Tao, Liu, Zihao, Wang, Yanzhi, Jin, Yier, Wen, Wujie
DNN is presenting human-level performance for many complex intelligent tasks in real-world applications. However, it also introduces ever-increasing security concerns. For example, the emerging adversarial attacks indicate that even very small and often imperceptible adversarial input perturbations can easily mislead the cognitive function of deep learning systems (DLS). Existing DNN adversarial studies are narrowly performed on the ideal software-level DNN models with a focus on single uncertainty factor, i.e. input perturbations, however, the impact of DNN model reshaping on adversarial attacks, which is introduced by various hardware-favorable techniques such as hash-based weight compression during modern DNN hardware implementation, has never been discussed. In this work, we for the first time investigate the multi-factor adversarial attack problem in practical model optimized deep learning systems by jointly considering the DNN model-reshaping (e.g. HashNet based deep compression) and the input perturbations. We first augment adversarial example generating method dedicated to the compressed DNN models by incorporating the software-based approaches and mathematical modeled DNN reshaping. We then conduct a comprehensive robustness and vulnerability analysis of deep compressed DNN models under derived adversarial attacks. A defense technique named "gradient inhibition" is further developed to ease the generating of adversarial examples thus to effectively mitigate adversarial attacks towards both software and hardware-oriented DNNs. Simulation results show that "gradient inhibition" can decrease the average success rate of adversarial attacks from 87.99% to 4.77% (from 86.74% to 4.64%) on MNIST (CIFAR-10) benchmark with marginal accuracy degradation across various DNNs.
On the Universal Approximation Property and Equivalence of Stochastic Computing-based Neural Networks and Binary Neural Networks
Wang, Yanzhi, Zhan, Zheng, Li, Jiayu, Tang, Jian, Yuan, Bo, Zhao, Liang, Wen, Wujie, Wang, Siyue, Lin, Xue
Large-scale deep neural networks are both memory intensive and computation-intensive, thereby posing stringent requirements on the computing platforms. Hardware accelerations of deep neural networks have been extensively investigated in both industry and academia. Specific forms of binary neural networks (BNNs) and stochastic computing based neural networks (SCNNs) are particularly appealing to hardware implementations since they can be implemented almost entirely with binary operations. Despite the obvious advantages in hardware implementation, these approximate computing techniques are questioned by researchers in terms of accuracy and universal applicability. Also it is important to understand the relative pros and cons of SCNNs and BNNs in theory and in actual hardware implementations. In order to address these concerns, in this paper we prove that the "ideal" SCNNs and BNNs satisfy the universal approximation property with probability 1 (due to the stochastic behavior). The proof is conducted by first proving the property for SCNNs from the strong law of large numbers, and then using SCNNs as a "bridge" to prove for BNNs. Based on the universal approximation property, we further prove that SCNNs and BNNs exhibit the same energy complexity. In other words, they have the same asymptotic energy consumption with the growing of network size. We also provide a detailed analysis of the pros and cons of SCNNs and BNNs for hardware implementations and conclude that SCNNs are more suitable for hardware.
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework
Wang, Yanzhi, Ding, Caiwen, Li, Zhe, Yuan, Geng, Liao, Siyu, Ma, Xiaolong, Yuan, Bo, Qian, Xuehai, Tang, Jian, Qiu, Qinru, Lin, Xue
Hardware accelerations of deep learning systems have been extensively investigated in industry and academia. The aim of this paper is to achieve ultra-high energy efficiency and performance for hardware implementations of deep neural networks (DNNs). An algorithm-hardware co-optimization framework is developed, which is applicable to different DNN types, sizes, and application scenarios. The algorithm part adopts the general block-circulant matrices to achieve a fine-grained tradeoff between accuracy and compression ratio. It applies to both fully-connected and convolutional layers and contains a mathematically rigorous proof of the effectiveness of the method. The proposed algorithm reduces computational complexity per layer from O($n^2$) to O($n\log n$) and storage complexity from O($n^2$) to O($n$), both for training and inference. The hardware part consists of highly efficient Field Programmable Gate Array (FPGA)-based implementations using effective reconfiguration, batch processing, deep pipelining, resource re-using, and hierarchical control. Experimental results demonstrate that the proposed framework achieves at least 152X speedup and 71X energy efficiency gain compared with IBM TrueNorth processor under the same test accuracy. It achieves at least 31X energy efficiency gain compared with the reference FPGA-based work.
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework
Wang, Yanzhi (Syracuse University) | Ding, Caiwen (Syracuse University) | Li, Zhe (Syracuse University) | Yuan, Geng (Syracuse University) | Liao, Siyu (City University of New York) | Ma, Xiaolong (Syracuse University) | Yuan, Bo (City University of New York) | Qian, Xuehai (University of Southern California) | Tang, Jian (Syracuse University) | Qiu, Qinru (Syracuse University) | Lin, Xue (Northeastern University)
Hardware accelerations of deep learning systems have been extensively investigated in industry and academia. The aim of this paper is to achieve ultra-high energy efficiency and performance for hardware implementations of deep neural networks (DNNs). An algorithm-hardware co-optimization framework is developed, which is applicable to different DNN types, sizes, and application scenarios. The algorithm part adopts the general block-circulant matrices to achieve a fine-grained tradeoff of accuracy and compression ratio. It applies to both fully-connected and convolutional layers and contains a mathematically rigorous proof of the effectiveness of the method. The proposed algorithm reduces computational complexity per layer from O(n 2 ) to O(n log n) and storage complexity from O(n 2 ) to O(n), both for training and inference. The hardware part consists of highly efficient Field Programmable Gate Array (FPGA)-based implementations using effective reconfiguration, batch processing, deep pipelining, resource re-using, and hierarchical control. Experimental results demonstrate that the proposed framework achieves at least 152X speedup and 71X energy efficiency gain compared with IBM TrueNorth processor under the same test accuracy. It achieves at least 31X energy efficiency gain compared with the reference FPGA-based work.
VIBNN: Hardware Acceleration of Bayesian Neural Networks
Cai, Ruizhe, Ren, Ao, Liu, Ning, Ding, Caiwen, Wang, Luhao, Qian, Xuehai, Pedram, Massoud, Wang, Yanzhi
Bayesian Neural Networks (BNNs) have been proposed to address the problem of model uncertainty in training and inference. By introducing weights associated with conditioned probability distributions, BNNs are capable of resolving the overfitting issue commonly seen in conventional neural networks and allow for small-data training, through the variational inference process. Frequent usage of Gaussian random variables in this process requires a properly optimized Gaussian Random Number Generator (GRNG). The high hardware cost of conventional GRNG makes the hardware implementation of BNNs challenging. In this paper, we propose VIBNN, an FPGA-based hardware accelerator design for variational inference on BNNs. We explore the design space for massive amount of Gaussian variable sampling tasks in BNNs. Specifically, we introduce two high performance Gaussian (pseudo) random number generators: the RAM-based Linear Feedback Gaussian Random Number Generator (RLF-GRNG), which is inspired by the properties of binomial distribution and linear feedback logics; and the Bayesian Neural Network-oriented Wallace Gaussian Random Number Generator. To achieve high scalability and efficient memory access, we propose a deep pipelined accelerator architecture with fast execution and good hardware utilization. Experimental results demonstrate that the proposed VIBNN implementations on an FPGA can achieve throughput of 321,543.4 Images/s and energy efficiency upto 52,694.8 Images/J while maintaining similar accuracy as its software counterpart.
Deep Reinforcement Learning for Dynamic Treatment Regimes on Medical Registry Data
Liu, Ning, Liu, Ying, Logan, Brent, Xu, Zhiyuan, Tang, Jian, Wang, Yanzhi
This paper presents the first deep reinforcement learning (DRL) framework to estimate the optimal Dynamic Treatment Regimes from observational medical data. This framework is more flexible and adaptive for high dimensional action and state spaces than existing reinforcement learning methods to model real-life complexity in heterogeneous disease progression and treatment choices, with the goal of providing doctor and patients the data-driven personalized decision recommendations. The proposed DRL framework comprises (i) a supervised learning step to predict the most possible expert actions, and (ii) a deep reinforcement learning step to estimate the long-term value function of Dynamic Treatment Regimes. Both steps depend on deep neural networks. As a key motivational example, we have implemented the proposed framework on a data set from the Center for International Bone Marrow Transplant Research (CIBMTR) registry database, focusing on the sequence of prevention and treatments for acute and chronic graft versus host disease after transplantation. In the experimental results, we have demonstrated promising accuracy in predicting human experts' decisions, as well as the high expected reward function in the DRL-based dynamic treatment regimes.
FFT-Based Deep Learning Deployment in Embedded Systems
Lin, Sheng, Liu, Ning, Nazemi, Mahdi, Li, Hongjia, Ding, Caiwen, Wang, Yanzhi, Pedram, Massoud
Deep learning has delivered its powerfulness in many application domains, especially in image and speech recognition. As the backbone of deep learning, deep neural networks (DNNs) consist of multiple layers of various types with hundreds to thousands of neurons. Embedded platforms are now becoming essential for deep learning deployment due to their portability, versatility, and energy efficiency. The large model size of DNNs, while providing excellent accuracy, also burdens the embedded platforms with intensive computation and storage. Researchers have investigated on reducing DNN model size with negligible accuracy loss. This work proposes a Fast Fourier Transform (FFT)-based DNN training and inference model suitable for embedded platforms with reduced asymptotic complexity of both computation and storage, making our approach distinguished from existing approaches. We develop the training and inference algorithms based on FFT as the computing kernel and deploy the FFT-based inference model on embedded platforms achieving extraordinary processing speed.
A Memristor-Based Optimization Framework for AI Applications
Liu, Sijia, Wang, Yanzhi, Fardad, Makan, Varshney, Pramod K.
Memristors have recently received significant attention as ubiquitous device-level components for building a novel generation of computing systems. These devices have many promising features, such as non-volatility, low power consumption, high density, and excellent scalability. The ability to control and modify biasing voltages at the two terminals of memristors make them promising candidates to perform matrix-vector multiplications and solve systems of linear equations. In this article, we discuss how networks of memristors arranged in crossbar arrays can be used for efficiently solving optimization and machine learning problems. We introduce a new memristor-based optimization framework that combines the computational merit of memristor crossbars with the advantages of an operator splitting method, alternating direction method of multipliers (ADMM). Here, ADMM helps in splitting a complex optimization problem into subproblems that involve the solution of systems of linear equations. The capability of this framework is shown by applying it to linear programming, quadratic programming, and sparse optimization. In addition to ADMM, implementation of a customized power iteration (PI) method for eigenvalue/eigenvector computation using memristor crossbars is discussed. The memristor-based PI method can further be applied to principal component analysis (PCA). The use of memristor crossbars yields a significant speed-up in computation, and thus, we believe, has the potential to advance optimization and machine learning research in artificial intelligence (AI).
Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank
Zhao, Liang, Liao, Siyu, Wang, Yanzhi, Li, Zhe, Tang, Jian, Pan, Victor, Yuan, Bo
Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices in deep learning. First, we prove the universal approximation property of LDR neural networks with a mild condition on the displacement operators. We then show that the error bounds of LDR neural networks are as efficient as general neural networks with both single-layer and multiple-layer structure. Finally, we propose back-propagation based training algorithm for general LDR neural networks.
CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-CirculantWeight Matrices
Ding, Caiwen, Liao, Siyu, Wang, Yanzhi, Li, Zhe, Liu, Ning, Zhuo, Youwei, Wang, Chao, Qian, Xuehai, Bai, Yu, Yuan, Geng, Ma, Xiaolong, Zhang, Yipeng, Tang, Jian, Qiu, Qinru, Lin, Xue, Yuan, Bo
Large-scale deep neural networks (DNNs) are both compute and memory intensive. As the size of DNNs continues to grow, it is critical to improve the energy efficiency and performance while maintaining accuracy. For DNNs, the model size is an important factor affecting performance, scalability and energy efficiency. Weight pruning achieves good compression ratios but suffers from three drawbacks: 1) the irregular network structure after pruning; 2) the increased training complexity; and 3) the lack of rigorous guarantee of compression ratio and inference accuracy. To overcome these limitations, this paper proposes CirCNN, a principled approach to represent weights and process neural networks using block-circulant matrices. CirCNN utilizes the Fast Fourier Transform (FFT)-based fast multiplication, simultaneously reducing the computational complexity (both in inference and training) from O(n2) to O(nlogn) and the storage complexity from O(n2) to O(n), with negligible accuracy loss. Compared to other approaches, CirCNN is distinct due to its mathematical rigor: it can converge to the same effectiveness as DNNs without compression. The CirCNN architecture, a universal DNN inference engine that can be implemented on various hardware/software platforms with configurable network architecture. To demonstrate the performance and energy efficiency, we test CirCNN in FPGA, ASIC and embedded processors. Our results show that CirCNN architecture achieves very high energy efficiency and performance with a small hardware footprint. Based on the FPGA implementation and ASIC synthesis results, CirCNN achieves 6-102X energy efficiency improvements compared with the best state-of-the-art results.