Wang, Yanran
Support Vector Machine Guided Reproducing Kernel Particle Method for Image-Based Modeling of Microstructures
Wang, Yanran, Baek, Jonghyuk, Tang, Yichun, Du, Jing, Hillman, Mike, Chen, J. S.
This work presents an approach for automating the discretization and approximation procedures in constructing digital representations of composites from Micro-CT images featuring intricate microstructures. The proposed method is guided by the Support Vector Machine (SVM) classification, offering an effective approach for discretizing microstructural images. An SVM soft margin training process is introduced as a classification of heterogeneous material points, and image segmentation is accomplished by identifying support vectors through a local regularized optimization problem. In addition, an Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) is proposed for appropriate approximations of weak discontinuities across material interfaces. The proposed method modifies the smooth kernel functions with a regularized heavy-side function concerning the material interfaces to alleviate Gibb's oscillations. This IM-RKPM is formulated without introducing duplicated degrees of freedom associated with the interface nodes commonly needed in the conventional treatments of weak discontinuities in the meshfree methods. Moreover, IM-RKPM can be implemented with various domain integration techniques, such as Stabilized Conforming Nodal Integration (SCNI). The extension of the proposed method to 3-dimension is straightforward, and the effectiveness of the proposed method is validated through the image-based modeling of polymer-ceramic composite microstructures.
Practical Mission Planning for Optimized UAV-Sensor Wireless Recharging
Qian, Qiuchen, O'Keeffe, James, Wang, Yanran, Boyle, David
Optimal maintenance of sensor nodes in a Wireless Rechargeable Sensor Network (WRSN) requires effective scheduling of power delivery vehicles by solving the Charging Scheduling Problem (CSP). Deploying Unmanned Aerial Vehicles (UAVs) as mobile chargers has emerged as a promising solution due to their mobility and flexibility. The CSP can be formulated as a Mixed-Integer Non-Linear Programming problem whose optimization objective is maximizing the recharged energy of sensor nodes within the UAV battery constraint. While many studies have demonstrated satisfactory performance of heuristic algorithms in addressing specific routing problems, few studies explore online updating (i.e., mission re-planning `on the fly') in the CSP context. Here we present a new offline and online mission planner leveraging a first-principles power consumption model that uses real-time state information and environmental information. The planner, namely Rapid Online Metaheuristic-based Planner (ROMP), supplements solutions from a Guided Local Search (GLS) with our Context-aware Black Hole Algorithm. Our results demonstrate that ROMP outperforms GLS in most cases tested. We developed and proposed FastROMP to speed up the online mission (re-)planning algorithm by introducing a new online adjustment operator that uses the latest state information as input, eliminating the need for re-initialization. FastROMP not only provides a better quality route, but it also significantly reduces computational time. The reduction ranges from 39.57% in sparse deployment to 93.3% in denser deployments.
QuaDUE-CCM: Interpretable Distributional Reinforcement Learning using Uncertain Contraction Metrics for Precise Quadrotor Trajectory Tracking
Wang, Yanran, O'Keeffe, James, Qian, Qiuchen, Boyle, David
Accuracy and stability are common requirements for Quadrotor trajectory tracking systems. Designing an accurate and stable tracking controller remains challenging, particularly in unknown and dynamic environments with complex aerodynamic disturbances. We propose a Quantile-approximation-based Distributional-reinforced Uncertainty Estimator (QuaDUE) to accurately identify the effects of aerodynamic disturbances, i.e., the uncertainties between the true and estimated Control Contraction Metrics (CCMs). Taking inspiration from contraction theory and integrating the QuaDUE for uncertainties, our novel CCM-based trajectory tracking framework tracks any feasible reference trajectory precisely whilst guaranteeing exponential convergence. More importantly, the convergence and training acceleration of the distributional RL are guaranteed and analyzed, respectively, from theoretical perspectives. We also demonstrate our system under unknown and diverse aerodynamic forces. Under large aerodynamic forces (>2m/s^2), compared with the classic data-driven approach, our QuaDUE-CCM achieves at least a 56.6% improvement in tracking error. Compared with QuaDRED-MPC, a distributional RL-based approach, QuaDUE-CCM achieves at least a 3 times improvement in contraction rate.
Interpretable Stochastic Model Predictive Control using Distributional Reinforced Estimation for Quadrotor Tracking Systems
Wang, Yanran, O'Keeffe, James, Qian, Qiuchen, Boyle, David
This paper presents a novel trajectory tracker for autonomous quadrotor navigation in dynamic and complex environments. The proposed framework integrates a distributional Reinforcement Learning (RL) estimator for unknown aerodynamic effects into a Stochastic Model Predictive Controller (SMPC) for trajectory tracking. Aerodynamic effects derived from drag forces and moment variations are difficult to model directly and accurately. Most current quadrotor tracking systems therefore treat them as simple `disturbances' in conventional control approaches. We propose Quantile-approximation-based Distributional Reinforced-disturbance-estimator, an aerodynamic disturbance estimator, to accurately identify disturbances, i.e., uncertainties between the true and estimated values of aerodynamic effects. Simplified Affine Disturbance Feedback is employed for control parameterization to guarantee convexity, which we then integrate with a SMPC to achieve sufficient and non-conservative control signals. We demonstrate our system to improve the cumulative tracking errors by at least 66% with unknown and diverse aerodynamic forces compared with recent state-of-the-art. Concerning traditional Reinforcement Learning's non-interpretability, we provide convergence and stability guarantees of Distributional RL and SMPC, respectively, with non-zero mean disturbances.
Neuroimaging Modality Fusion in Alzheimer's Classification Using Convolutional Neural Networks
Punjabi, Arjun, Martersteck, Adam, Wang, Yanran, Parrish, Todd B., Katsaggelos, Aggelos K., Initiative, the Alzheimer's Disease Neuroimaging
Abstract--Automated methods for Alzheimer's disease (AD) classification have the potential for great clinical benefits and may provide insight for combating the disease. Machine learning, and more specifically deep neural networks, have been shown to have great efficacy in this domain. These algorithms often use neurological imaging data such as MRI and PET, but a comprehensive and balanced comparison of these modalities has not been performed. In order to accurately determine the relative strength of each imaging variant, this work performs a comparison study in the context of Alzheimer's dementia classification using the Alzheimer's Disease Neuroimaging Initiative (ADNI) Furthermore, this work analyzes the benefits of using both modalities in a fusion setting and discusses how these data types may be leveraged in future AD studies using deep learning. Index Terms--Alzheimer's disease, computer aided diagnosis, convolutional neural network, multimodal, data fusion. LZHEIMER'S disease (AD) is a neurodegenerative disorder characterized by cognitive decline and dementia. The number of individuals living with AD in the United States is expected to reach 10 million by the year 2025 [1]. As a result, automated methods for computer aided diagnosis could greatly improve the ability to screen at-risk individuals. Such methods typically take as input patient data including demographics, medical history, genetic sequencing, and neurological images among others. The resulting output is health status indicated by a diagnosis label, which may also include a probabilistic uncertainty on the prediction.