Wang, Yanhao
Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization Pathways
Fabbri, Francesco, Wang, Yanhao, Bonchi, Francesco, Castillo, Carlos, Mathioudakis, Michael
Recommender systems typically suggest to users content similar to what they consumed in the past. If a user happens to be exposed to strongly polarized content, she might subsequently receive recommendations which may steer her towards more and more radicalized content, eventually being trapped in what we call a "radicalization pathway". In this paper, we study the problem of mitigating radicalization pathways using a graph-based approach. Specifically, we model the set of recommendations of a "what-to-watch-next" recommender as a d-regular directed graph where nodes correspond to content items, links to recommendations, and paths to possible user sessions. We measure the "segregation" score of a node representing radicalized content as the expected length of a random walk from that node to any node representing non-radicalized content. High segregation scores are associated to larger chances to get users trapped in radicalization pathways. Hence, we define the problem of reducing the prevalence of radicalization pathways by selecting a small number of edges to "rewire", so to minimize the maximum of segregation scores among all radicalized nodes, while maintaining the relevance of the recommendations. We prove that the problem of finding the optimal set of recommendations to rewire is NP-hard and NP-hard to approximate within any factor. Therefore, we turn our attention to heuristics, and propose an efficient yet effective greedy algorithm based on the absorbing random walk theory. Our experiments on real-world datasets in the context of video and news recommendations confirm the effectiveness of our proposal.
Query-free Black-box Adversarial Attacks on Graphs
Xu, Jiarong, Sun, Yizhou, Jiang, Xin, Wang, Yanhao, Yang, Yang, Wang, Chunping, Lu, Jiangang
Many graph-based machine learning models are known to be vulnerable to adversarial attacks, where even limited perturbations on input data can result in dramatic performance deterioration. Most existing works focus on moderate settings in which the attacker is either aware of the model structure and parameters (white-box), or able to send queries to fetch model information. In this paper, we propose a query-free black-box adversarial attack on graphs, in which the attacker has no knowledge of the target model and no query access to the model. With the mere observation of the graph topology, the proposed attack strategy flips a limited number of links to mislead the graph models. We prove that the impact of the flipped links on the target model can be quantified by spectral changes, and thus be approximated using the eigenvalue perturbation theory. Accordingly, we model the proposed attack strategy as an optimization problem, and adopt a greedy algorithm to select the links to be flipped. Due to its simplicity and scalability, the proposed model is not only generic in various graph-based models, but can be easily extended when different knowledge levels are accessible as well. Extensive experiments demonstrate the effectiveness and efficiency of the proposed model on various downstream tasks, as well as several different graph-based learning models.