Goto

Collaborating Authors

 Wang, Xun


MemDPT: Differential Privacy for Memory Efficient Language Models

arXiv.org Artificial Intelligence

Large language models have consistently demonstrated remarkable performance across a wide spectrum of applications. Nonetheless, the deployment of these models can inadvertently expose user privacy to potential risks. The substantial memory demands of these models during training represent a significant resource consumption challenge. The sheer size of these models imposes a considerable burden on memory resources, which is a matter of significant concern in practice. In this paper, we present an innovative training framework MemDPT that not only reduces the memory cost of large language models but also places a strong emphasis on safeguarding user data privacy. MemDPT provides edge network and reverse network designs to accommodate various differential privacy memory-efficient fine-tuning schemes. Our approach not only achieves $2 \sim 3 \times$ memory optimization but also provides robust privacy protection, ensuring that user data remains secure and confidential. Extensive experiments have demonstrated that MemDPT can effectively provide differential privacy efficient fine-tuning across various task scenarios.


Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement

arXiv.org Artificial Intelligence

Large language model agents have exhibited exceptional performance across a range of complex interactive tasks. Recent approaches have utilized tuning with expert trajectories to enhance agent performance, yet they primarily concentrate on outcome rewards, which may lead to errors or suboptimal actions due to the absence of process supervision signals. In this paper, we introduce the Iterative step-level Process Refinement (IPR) framework, which provides detailed step-by-step guidance to enhance agent training. Specifically, we adopt the Monte Carlo method to estimate step-level rewards. During each iteration, the agent explores along the expert trajectory and generates new actions. These actions are then evaluated against the corresponding step of expert trajectory using step-level rewards. Such comparison helps identify discrepancies, yielding contrastive action pairs that serve as training data for the agent. Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines. Moreover, our analytical findings highlight the effectiveness of IPR in augmenting action efficiency and its applicability to diverse models.


Tool-Planner: Dynamic Solution Tree Planning for Large Language Model with Tool Clustering

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method.


xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token

arXiv.org Artificial Intelligence

This paper introduces xRAG, an innovative context compression method tailored for retrieval-augmented generation. xRAG reinterprets document embeddings in dense retrieval--traditionally used solely for retrieval--as features from the retrieval modality. By employing a modality fusion methodology, xRAG seamlessly integrates these embeddings into the language model representation space, effectively eliminating the need for their textual counterparts and achieving an extreme compression rate. In xRAG, the only trainable component is the modality bridge, while both the retriever and the language model remain frozen. This design choice allows for the reuse of offline-constructed document embeddings and preserves the plug-and-play nature of retrieval augmentation. Experimental results demonstrate that xRAG achieves an average improvement of over 10% across six knowledge-intensive tasks, adaptable to various language model backbones, ranging from a dense 7B model to an 8x7B Mixture of Experts configuration. xRAG not only significantly outperforms previous context compression methods but also matches the performance of uncompressed models on several datasets, while reducing overall FLOPs by a factor of 3.53. Our work pioneers new directions in retrieval-augmented generation from the perspective of multimodality fusion, and we hope it lays the foundation for future efficient and scalable retrieval-augmented systems


Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers

arXiv.org Artificial Intelligence

Time series prediction is crucial for understanding and forecasting complex dynamics in various domains, ranging from finance and economics to climate and healthcare. Based on Transformer architecture, one approach involves encoding multiple variables from the same timestamp into a single temporal token to model global dependencies. In contrast, another approach embeds the time points of individual series into separate variate tokens. The former method faces challenges in learning variate-centric representations, while the latter risks missing essential temporal information critical for accurate forecasting. In our work, we introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions based on a vanilla Transformer. We regard the input time series data as a grid, where the $x$-axis represents the time steps and the $y$-axis represents the variates. A vertical slicing of this grid combines the variates at each time step into a \textit{time token}, while a horizontal slicing embeds the individual series across all time steps into a \textit{variate token}. Correspondingly, a \textit{horizontal attention mechanism} focuses on time tokens to comprehend the correlations between data at various time steps, while a \textit{vertical}, variate-aware \textit{attention} is employed to grasp multivariate correlations. This combination enables efficient processing of information across both time and variate dimensions, thereby enhancing the model's analytical strength. % We also integrate the patch technique, segmenting time tokens into subseries-level patches, ensuring that local semantic information is retained in the embedding. The GridTST model consistently delivers state-of-the-art performance across various real-world datasets.


Exploring LLM Multi-Agents for ICD Coding

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated impressive and diverse abilities that can benefit various domains, such as zero and few-shot information extraction from clinical text without domain-specific training. However, for the ICD coding task, they often hallucinate key details and produce high recall but low precision results due to the high-dimensional and skewed distribution of the ICD codes. Existing LLM-based methods fail to account for the complex and dynamic interactions among the human agents involved in coding, such as patients, physicians, and coders, and they lack interpretability and reliability. In this paper, we present a novel multi-agent method for ICD coding, which mimics the real-world coding process with five agents: a patient agent, a physician agent, a coder agent, a reviewer agent, and an adjuster agent. Each agent has a specific function and uses a LLM-based model to perform it. We evaluate our method on the MIMIC-III dataset and show that our proposed multi-agent coding framework substantially improves performance on both common and rare codes compared to Zero-shot Chain of Thought (CoT) prompting and self-consistency with CoT. The ablation study confirms the proposed agent roles' efficacy. Our method also matches the state-of-the-art ICD coding methods that require pre-training or fine-tuning, in terms of coding accuracy, rare code accuracy, and explainability.


LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models

arXiv.org Artificial Intelligence

This paper presents a comprehensive survey of the current status and opportunities for Large Language Models (LLMs) in strategic reasoning, a sophisticated form of reasoning that necessitates understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly. Strategic reasoning is distinguished by its focus on the dynamic and uncertain nature of interactions among multi-agents, where comprehending the environment and anticipating the behavior of others is crucial. We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with LLMs, highlighting the burgeoning development in this area and the interdisciplinary approaches enhancing their decision-making performance. It aims to systematize and clarify the scattered literature on this subject, providing a systematic review that underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.


Structurally Prune Anything: Any Architecture, Any Framework, Any Time

arXiv.org Artificial Intelligence

Neural network pruning serves as a critical technique for enhancing the efficiency of deep learning models. Unlike unstructured pruning, which only sets specific parameters to zero, structured pruning eliminates entire channels, thus yielding direct computational and storage benefits. However, the diverse patterns for coupling parameters, such as residual connections and group convolutions, the diverse deep learning frameworks, and the various time stages at which pruning can be performed make existing pruning methods less adaptable to different architectures, frameworks, and pruning criteria. To address this, we introduce Structurally Prune Anything (SPA), a versatile structured pruning framework that can prune neural networks with any architecture, from any framework, and at any stage of training. SPA leverages a standardized computational graph and ONNX representation to prune diverse neural network architectures without the need for manual intervention. SPA employs a group-level importance estimation method, which groups dependent computational operators, estimates their importance, and prunes unimportant coupled channels. This enables the transfer of various existing pruning criteria into a structured group style. As a result, SPA supports pruning at any time, either before training, after training with fine-tuning, or after training without fine-tuning. In the context of the latter, we introduce Optimal Brain SPA (OBSPA), an algorithm that achieves state-of-the-art pruning results needing neither fine-tuning nor calibration data. In extensive experiments, SPA shows competitive to state-of-the-art pruning performance across various architectures, from popular frameworks, at different pruning times.


Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for Language Models

arXiv.org Artificial Intelligence

We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.


K-Level Reasoning with Large Language Models

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) have demonstrated their proficiency in complex reasoning tasks, their performance in dynamic, interactive, and competitive scenarios - such as business strategy and stock market analysis - remains underexplored. To bridge this gap, we formally explore the dynamic reasoning capabilities of LLMs for decision-making in rapidly evolving environments. We introduce two game theory-based pilot challenges that mirror the complexities of real-world dynamic decision-making. These challenges are well-defined, enabling clear, controllable, and precise evaluation of LLMs' dynamic reasoning abilities. Through extensive experiments, we find that existing reasoning methods tend to falter in dynamic settings that require k-level thinking - a key concept not tackled by previous works. To address this, we propose a novel reasoning approach for LLMs, named "K-Level Reasoning". This approach adopts the perspective of rivals to recursively employ k-level thinking based on available historical information, which significantly improves the prediction accuracy of rivals' subsequent moves and informs more strategic decision-making. This research not only sets a robust quantitative benchmark for the assessment of dynamic reasoning but also markedly enhances the proficiency of LLMs in dynamic contexts.