Goto

Collaborating Authors

 Wang, Xiting


Evaluating Concept-based Explanations of Language Models: A Study on Faithfulness and Readability

arXiv.org Artificial Intelligence

Despite the surprisingly high intelligence exhibited by Large Language Models (LLMs), we are somehow intimidated to fully deploy them into real-life applications considering their black-box nature. Concept-based explanations arise as a promising avenue for explaining what the LLMs have learned, making them more transparent to humans. However, current evaluations for concepts tend to be heuristic and non-deterministic, e.g. case study or human evaluation, hindering the development of the field. To bridge the gap, we approach concept-based explanation evaluation via faithfulness and readability. We first introduce a formal definition of concept generalizable to diverse concept-based explanations. Based on this, we quantify faithfulness via the difference in the output upon perturbation. We then provide an automatic measure for readability, by measuring the coherence of patterns that maximally activate a concept. This measure serves as a cost-effective and reliable substitute for human evaluation. Finally, based on measurement theory, we describe a meta-evaluation method for evaluating the above measures via reliability and validity, which can be generalized to other tasks as well. Extensive experimental analysis has been conducted to validate and inform the selection of concept evaluation measures.


Evaluating General-Purpose AI with Psychometrics

arXiv.org Artificial Intelligence

Comprehensive and accurate evaluation of general-purpose AI systems such as large language models allows for effective mitigation of their risks and deepened understanding of their capabilities. Current evaluation methodology, mostly based on benchmarks of specific tasks, falls short of adequately assessing these versatile AI systems, as present techniques lack a scientific foundation for predicting their performance on unforeseen tasks and explaining their varying performance on specific task items or user inputs. Moreover, existing benchmarks of specific tasks raise growing concerns about their reliability and validity. To tackle these challenges, we suggest transitioning from task-oriented evaluation to construct-oriented evaluation. Psychometrics, the science of psychological measurement, provides a rigorous methodology for identifying and measuring the latent constructs that underlie performance across multiple tasks. We discuss its merits, warn against potential pitfalls, and propose a framework to put it into practice. Finally, we explore future opportunities of integrating psychometrics with the evaluation of general-purpose AI systems.


Knowledge Plugins: Enhancing Large Language Models for Domain-Specific Recommendations

arXiv.org Artificial Intelligence

The significant progress of large language models (LLMs) provides a promising opportunity to build human-like systems for various practical applications. However, when applied to specific task domains, an LLM pre-trained on a general-purpose corpus may exhibit a deficit or inadequacy in two types of domain-specific knowledge. One is a comprehensive set of domain data that is typically large-scale and continuously evolving. The other is specific working patterns of this domain reflected in the data. The absence or inadequacy of such knowledge impacts the performance of the LLM. In this paper, we propose a general paradigm that augments LLMs with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE. This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way. Then, the extracted knowledge is incorporated through prompts, without any computational cost of model fine-tuning. We instantiate the general paradigm on a widespread application, i.e. recommender systems, where critical item attributes and collaborative filtering signals are incorporated. Experimental results demonstrate that DOKE can substantially improve the performance of LLMs in specific domains.


Value FULCRA: Mapping Large Language Models to the Multidimensional Spectrum of Basic Human Values

arXiv.org Artificial Intelligence

The rapid advancement of Large Language Models (LLMs) has attracted much attention to value alignment for their responsible development. However, how to define values in this context remains a largely unexplored question. Existing work mainly follows the Helpful, Honest, Harmless principle and specifies values as risk criteria formulated in the AI community, e.g., fairness and privacy protection, suffering from poor clarity, adaptability and transparency. Inspired by basic values in humanity and social science across cultures, this work proposes a novel basic value alignment paradigm and introduces a value space spanned by basic value dimensions. All LLMs' behaviors can be mapped into the space by identifying the underlying values, possessing the potential to address the three challenges. To foster future research, we apply the representative Schwartz's Theory of Basic Values as an initialized example and construct FULCRA, a dataset consisting of 5k (LLM output, value vector) pairs. Our extensive analysis of FULCRA reveals the underlying relation between basic values and LLMs' behaviors, demonstrating that our approach not only covers existing mainstream risks but also anticipates possibly unidentified ones. Additionally, we present an initial implementation of the basic value evaluation and alignment, paving the way for future research in this line.


Unpacking the Ethical Value Alignment in Big Models

arXiv.org Artificial Intelligence

Big models have greatly advanced AI's ability to understand, generate, and manipulate information and content, enabling numerous applications. However, as these models become increasingly integrated into everyday life, their inherent ethical values and potential biases pose unforeseen risks to society. This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models. Taking a normative ethics perspective, we propose a reassessment of recent normative guidelines, highlighting the importance of collaborative efforts in academia to establish a unified and universal AI ethics framework. Furthermore, we investigate the moral inclinations of current mainstream LLMs using the Moral Foundation theory, analyze existing alignment algorithms, and outline the unique challenges encountered in aligning ethical values within them. To address these challenges, we introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method, representing an initial step towards the interdisciplinary construction of the ethically aligned AI This paper is a modified English version of our Chinese paper https://crad.ict.ac.cn/cn/article/doi/10.7544/issn1000-1239.202330553, intended to help non-Chinese native speakers better understand our work.


From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

arXiv.org Artificial Intelligence

Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.


Semi-Offline Reinforcement Learning for Optimized Text Generation

arXiv.org Artificial Intelligence

In reinforcement learning (RL), there are two major settings for interacting with the environment: online and offline. Online methods explore the environment at significant time cost, and offline methods efficiently obtain reward signals by sacrificing exploration capability. We propose semi-offline RL, a novel paradigm that smoothly transits from offline to online settings, balances exploration capability and training cost, and provides a theoretical foundation for comparing different RL settings. Based on the semi-offline formulation, we present the RL setting that is optimal in terms of optimization cost, asymptotic error, and overfitting error bound. Extensive experiments show that our semi-offline approach is efficient and yields comparable or often better performance compared with state-of-the-art methods.


DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text Generation

arXiv.org Artificial Intelligence

Self-training (ST) has prospered again in language understanding by augmenting the fine-tuning of pre-trained language models when labeled data is insufficient. However, it remains challenging to incorporate ST into attribute-controllable language generation. Augmented by only self-generated pseudo text, generation models over-emphasize exploitation of the previously learned space, suffering from a constrained generalization boundary. We revisit ST and propose a novel method, DuNST to alleviate this problem. DuNST jointly models text generation and classification with a shared Variational AutoEncoder and corrupts the generated pseudo text by two kinds of flexible noise to disturb the space. In this way, our model could construct and utilize both pseudo text from given labels and pseudo labels from available unlabeled text, which are gradually refined during the ST process. We theoretically demonstrate that DuNST can be regarded as enhancing exploration towards the potential real text space, providing a guarantee of improved performance. Experiments on three controllable generation tasks show that DuNST could significantly boost control accuracy while maintaining comparable generation fluency and diversity against several strong baselines.


Towards Explainable Collaborative Filtering with Taste Clusters Learning

arXiv.org Artificial Intelligence

Collaborative Filtering (CF) is a widely used and effective technique for recommender systems. In recent decades, there have been significant advancements in latent embedding-based CF methods for improved accuracy, such as matrix factorization, neural collaborative filtering, and LightGCN. However, the explainability of these models has not been fully explored. Adding explainability to recommendation models can not only increase trust in the decisionmaking process, but also have multiple benefits such as providing persuasive explanations for item recommendations, creating explicit profiles for users and items, and assisting item producers in design improvements. In this paper, we propose a neat and effective Explainable Collaborative Filtering (ECF) model that leverages interpretable cluster learning to achieve the two most demanding objectives: (1) Precise - the model should not compromise accuracy in the pursuit of explainability; and (2) Self-explainable - the model's explanations should truly reflect its decision-making process, not generated from post-hoc methods. The core of ECF is mining taste clusters from user-item interactions and item profiles.We map each user and item to a sparse set of taste clusters, and taste clusters are distinguished by a few representative tags. The user-item preference, users/items' cluster affiliations, and the generation of taste clusters are jointly optimized in an end-to-end manner. Additionally, we introduce a forest mechanism to ensure the model's accuracy, explainability, and diversity. To comprehensively evaluate the explainability quality of taste clusters, we design several quantitative metrics, including in-cluster item coverage, tag utilization, silhouette, and informativeness. Our model's effectiveness is demonstrated through extensive experiments on three real-world datasets.


DualFair: Fair Representation Learning at Both Group and Individual Levels via Contrastive Self-supervision

arXiv.org Artificial Intelligence

Algorithmic fairness has become an important machine learning problem, especially for mission-critical Web applications. This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations. Unlike existing models that target a single type of fairness, our model jointly optimizes for two fairness criteria - group fairness and counterfactual fairness - and hence makes fairer predictions at both the group and individual levels. Our model uses contrastive loss to generate embeddings that are indistinguishable for each protected group, while forcing the embeddings of counterfactual pairs to be similar. It then uses a self-knowledge distillation method to maintain the quality of representation for the downstream tasks. Extensive analysis over multiple datasets confirms the model's validity and further shows the synergy of jointly addressing two fairness criteria, suggesting the model's potential value in fair intelligent Web applications.