Not enough data to create a plot.
Try a different view from the menu above.
Wang, Xingxing
NLGR: Utilizing Neighbor Lists for Generative Rerank in Personalized Recommendation Systems
Wang, Shuli, Wei, Xue, Kou, Senjie, Wang, Chi, Chen, Wenshuai, Tang, Qi, Zhu, Yinhua, Xiao, Xiong, Wang, Xingxing
Reranking plays a crucial role in modern multi-stage recommender systems by rearranging the initial ranking list. Due to the inherent challenges of combinatorial search spaces, some current research adopts an evaluator-generator paradigm, with a generator generating feasible sequences and an evaluator selecting the best sequence based on the estimated list utility. However, these methods still face two issues. Firstly, due to the goal inconsistency problem between the evaluator and generator, the generator tends to fit the local optimal solution of exposure distribution rather than combinatorial space optimization. Secondly, the strategy of generating target items one by one is difficult to achieve optimality because it ignores the information of subsequent items. To address these issues, we propose a utilizing Neighbor Lists model for Generative Reranking (NLGR), which aims to improve the performance of the generator in the combinatorial space. NLGR follows the evaluator-generator paradigm and improves the generator's training and generating methods. Specifically, we use neighbor lists in combination space to enhance the training process, making the generator perceive the relative scores and find the optimization direction. Furthermore, we propose a novel sampling-based non-autoregressive generation method, which allows the generator to jump flexibly from the current list to any neighbor list. Extensive experiments on public and industrial datasets validate NLGR's effectiveness and we have successfully deployed NLGR on the Meituan food delivery platform.
Off-Policy Primal-Dual Safe Reinforcement Learning
Wu, Zifan, Tang, Bo, Lin, Qian, Yu, Chao, Mao, Shangqin, Xie, Qianlong, Wang, Xingxing, Wang, Dong
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose \textit{conservative policy optimization}, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce \textit{local policy convexification} to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
Deep Automated Mechanism Design for Integrating Ad Auction and Allocation in Feed
Li, Xuejian, Wang, Ze, Zhu, Bingqi, He, Fei, Wang, Yongkang, Wang, Xingxing
E-commerce platforms usually present an ordered list, mixed with several organic items and an advertisement, in response to each user's page view request. This list, the outcome of ad auction and allocation processes, directly impacts the platform's ad revenue and gross merchandise volume (GMV). Specifically, the ad auction determines which ad is displayed and the corresponding payment, while the ad allocation decides the display positions of the advertisement and organic items. The prevalent methods of segregating the ad auction and allocation into two distinct stages face two problems: 1) Ad auction does not consider externalities, such as the influence of actual display position and context on ad Click-Through Rate (CTR); 2) The ad allocation, which utilizes the auction-winning ad's payment to determine the display position dynamically, fails to maintain incentive compatibility (IC) for the advertisement. For instance, in the auction stage employing the traditional Generalized Second Price (GSP) , even if the winning ad increases its bid, its payment remains unchanged. This implies that the advertisement cannot secure a better position and thus loses the opportunity to achieve higher utility in the subsequent ad allocation stage. Previous research often focused on one of the two stages, neglecting the two-stage problem, which may result in suboptimal outcomes...
HiBid: A Cross-Channel Constrained Bidding System with Budget Allocation by Hierarchical Offline Deep Reinforcement Learning
Wang, Hao, Tang, Bo, Liu, Chi Harold, Mao, Shangqin, Zhou, Jiahong, Dai, Zipeng, Sun, Yaqi, Xie, Qianlong, Wang, Xingxing, Wang, Dong
Online display advertising platforms service numerous advertisers by providing real-time bidding (RTB) for the scale of billions of ad requests every day. The bidding strategy handles ad requests cross multiple channels to maximize the number of clicks under the set financial constraints, i.e., total budget and cost-per-click (CPC), etc. Different from existing works mainly focusing on single channel bidding, we explicitly consider cross-channel constrained bidding with budget allocation. Specifically, we propose a hierarchical offline deep reinforcement learning (DRL) framework called ``HiBid'', consisted of a high-level planner equipped with auxiliary loss for non-competitive budget allocation, and a data augmentation enhanced low-level executor for adaptive bidding strategy in response to allocated budgets. Additionally, a CPC-guided action selection mechanism is introduced to satisfy the cross-channel CPC constraint. Through extensive experiments on both the large-scale log data and online A/B testing, we confirm that HiBid outperforms six baselines in terms of the number of clicks, CPC satisfactory ratio, and return-on-investment (ROI). We also deploy HiBid on Meituan advertising platform to already service tens of thousands of advertisers every day.
RL-MPCA: A Reinforcement Learning Based Multi-Phase Computation Allocation Approach for Recommender Systems
Zhou, Jiahong, Mao, Shunhui, Yang, Guoliang, Tang, Bo, Xie, Qianlong, Lin, Lebin, Wang, Xingxing, Wang, Dong
Recommender systems aim to recommend the most suitable items to users from a large number of candidates. Their computation cost grows as the number of user requests and the complexity of services (or models) increases. Under the limitation of computation resources (CRs), how to make a trade-off between computation cost and business revenue becomes an essential question. The existing studies focus on dynamically allocating CRs in queue truncation scenarios (i.e., allocating the size of candidates), and formulate the CR allocation problem as an optimization problem with constraints. Some of them focus on single-phase CR allocation, and others focus on multi-phase CR allocation but introduce some assumptions about queue truncation scenarios. However, these assumptions do not hold in other scenarios, such as retrieval channel selection and prediction model selection. Moreover, existing studies ignore the state transition process of requests between different phases, limiting the effectiveness of their approaches. This paper proposes a Reinforcement Learning (RL) based Multi-Phase Computation Allocation approach (RL-MPCA), which aims to maximize the total business revenue under the limitation of CRs. RL-MPCA formulates the CR allocation problem as a Weakly Coupled MDP problem and solves it with an RL-based approach. Specifically, RL-MPCA designs a novel deep Q-network to adapt to various CR allocation scenarios, and calibrates the Q-value by introducing multiple adaptive Lagrange multipliers (adaptive-$\lambda$) to avoid violating the global CR constraints. Finally, experiments on the offline simulation environment and online real-world recommender system validate the effectiveness of our approach.
NMA: Neural Multi-slot Auctions with Externalities for Online Advertising
Liao, Guogang, Li, Xuejian, Wang, Ze, Yang, Fan, Guan, Muzhi, Zhu, Bingqi, Wang, Yongkang, Wang, Xingxing, Wang, Dong
Online advertising driven by auctions brings billions of dollars in revenue for social networking services and e-commerce platforms. GSP auctions, which are simple and easy to understand for advertisers, have almost become the benchmark for ad auction mechanisms in the industry. However, most GSP-based industrial practices assume that the user click only relies on the ad itself, which overlook the effect of external items, referred to as externalities. Recently, DNA has attempted to upgrade GSP with deep neural networks and models local externalities to some extent. However, it only considers set-level contexts from auctions and ignores the order and displayed position of ads, which is still suboptimal. Although VCG-based multi-slot auctions (e.g., VCG, WVCG) make it theoretically possible to model global externalities (e.g., the order and positions of ads and so on), they lack an efficient balance of both revenue and social welfare. In this paper, we propose novel auction mechanisms named Neural Multi-slot Auctions (NMA) to tackle the above-mentioned challenges. Specifically, we model the global externalities effectively with a context-aware list-wise prediction module to achieve better performance. We design a list-wise deep rank module to guarantee incentive compatibility in end-to-end learning. Furthermore, we propose an auxiliary loss for social welfare to effectively reduce the decline of social welfare while maximizing revenue. Experiment results on both offline large-scale datasets and online A/B tests demonstrate that NMA obtains higher revenue with balanced social welfare than other existing auction mechanisms (i.e., GSP, DNA, WVCG) in industrial practice, and we have successfully deployed NMA on Meituan food delivery platform.
TBIN: Modeling Long Textual Behavior Data for CTR Prediction
Chen, Shuwei, Li, Xiang, Dong, Jian, Zhang, Jin, Wang, Yongkang, Wang, Xingxing
Click-through rate (CTR) prediction plays a pivotal role in the success of recommendations. Inspired by the recent thriving of language models (LMs), a surge of works improve prediction by organizing user behavior data in a \textbf{textual} format and using LMs to understand user interest at a semantic level. While promising, these works have to truncate the textual data to reduce the quadratic computational overhead of self-attention in LMs. However, it has been studied that long user behavior data can significantly benefit CTR prediction. In addition, these works typically condense user diverse interests into a single feature vector, which hinders the expressive capability of the model. In this paper, we propose a \textbf{T}extual \textbf{B}ehavior-based \textbf{I}nterest Chunking \textbf{N}etwork (TBIN), which tackles the above limitations by combining an efficient locality-sensitive hashing algorithm and a shifted chunk-based self-attention. The resulting user diverse interests are dynamically activated, producing user interest representation towards the target item. Finally, the results of both offline and online experiments on real-world food recommendation platform demonstrate the effectiveness of TBIN.
Cross-Element Combinatorial Selection for Multi-Element Creative in Display Advertising
Zhang, Wei, Zhang, Ping, Dong, Jian, Wang, Yongkang, Zhang, Pengye, Zhang, Bo, Wang, Xingxing, Wang, Dong
The effectiveness of ad creatives is greatly influenced by their visual appearance. Advertising platforms can generate ad creatives with different appearances by combining creative elements provided by advertisers. However, with the increasing number of ad creative elements, it becomes challenging to select a suitable combination from the countless possibilities. The industry's mainstream approach is to select individual creative elements independently, which often overlooks the importance of interaction between creative elements during the modeling process. In response, this paper proposes a Cross-Element Combinatorial Selection framework for multiple creative elements, termed CECS. In the encoder process, a cross-element interaction is adopted to dynamically adjust the expression of a single creative element based on the current candidate creatives. In the decoder process, the creative combination problem is transformed into a cascade selection problem of multiple creative elements. A pointer mechanism with a cascade design is used to model the associations among candidates. Comprehensive experiments on real-world datasets show that CECS achieved the SOTA score on offline metrics. Moreover, the CECS algorithm has been deployed in our industrial application, resulting in a significant 6.02% CTR and 10.37% GMV lift, which is beneficial to the business.
A Collaborative Transfer Learning Framework for Cross-domain Recommendation
Zhang, Wei, Zhang, Pengye, Zhang, Bo, Wang, Xingxing, Wang, Dong
In the recommendation systems, there are multiple business domains to meet the diverse interests and needs of users, and the click-through rate(CTR) of each domain can be quite different, which leads to the demand for CTR prediction modeling for different business domains. The industry solution is to use domain-specific models or transfer learning techniques for each domain. The disadvantage of the former is that the data from other domains is not utilized by a single domain model, while the latter leverage all the data from different domains, but the fine-tuned model of transfer learning may trap the model in a local optimum of the source domain, making it difficult to fit the target domain. Meanwhile, significant differences in data quantity and feature schemas between different domains, known as domain shift, may lead to negative transfer in the process of transferring. To overcome these challenges, we propose the Collaborative Cross-Domain Transfer Learning Framework (CCTL). CCTL evaluates the information gain of the source domain on the target domain using a symmetric companion network and adjusts the information transfer weight of each source domain sample using the information flow network. This approach enables full utilization of other domain data while avoiding negative migration. Additionally, a representation enhancement network is used as an auxiliary task to preserve domain-specific features. Comprehensive experiments on both public and real-world industrial datasets, CCTL achieved SOTA score on offline metrics. At the same time, the CCTL algorithm has been deployed in Meituan, bringing 4.37% CTR and 5.43% GMV lift, which is significant to the business.
Graph Based Long-Term And Short-Term Interest Model for Click-Through Rate Prediction
Sun, Huinan, Yu, Guangliang, Zhang, Pengye, Zhang, Bo, Wang, Xingxing, Wang, Dong
Click-through rate (CTR) prediction aims to predict the probability that the user will click an item, which has been one of the key tasks in online recommender and advertising systems. In such systems, rich user behavior (viz. long- and short-term) has been proved to be of great value in capturing user interests. Both industry and academy have paid much attention to this topic and propose different approaches to modeling with long-term and short-term user behavior data. But there are still some unresolved issues. More specially, (1) rule and truncation based methods to extract information from long-term behavior are easy to cause information loss, and (2) single feedback behavior regardless of scenario to extract information from short-term behavior lead to information confusion and noise. To fill this gap, we propose a Graph based Long-term and Short-term interest Model, termed GLSM. It consists of a multi-interest graph structure for capturing long-term user behavior, a multi-scenario heterogeneous sequence model for modeling short-term information, then an adaptive fusion mechanism to fused information from long-term and short-term behaviors. Comprehensive experiments on real-world datasets, GLSM achieved SOTA score on offline metrics. At the same time, the GLSM algorithm has been deployed in our industrial application, bringing 4.9% CTR and 4.3% GMV lift, which is significant to the business.