Wang, Xing
A Novel Perception and Semantic Mapping Method for Robot Autonomy in Orchards
Pan, Yaoqiang, Cao, Hao, Hu, Kewei, Kang, Hanwen, Wang, Xing
Agricultural robots must navigate challenging dynamic and semi-structured environments. Recently, environmental modeling using LiDAR-based SLAM has shown promise in providing highly accurate geometry. However, how this chaotic environmental information can be used to achieve effective robot automation in the agricultural sector remains unexplored. In this study, we propose a novel semantic mapping and navigation framework for achieving robotic autonomy in orchards. It consists of two main components: a semantic processing module and a navigation module. First, we present a novel 3D detection network architecture, 3D-ODN, which can accurately process object instance information from point clouds. Second, we develop a framework to construct the visibility map by incorporating semantic information and terrain analysis. By combining these two critical components, our framework is evaluated in a number of key horticultural production scenarios, including a robotic system for in-situ phenotyping and daily monitoring, and a selective harvesting system in apple orchards. The experimental results show that our method can ensure high accuracy in understanding the environment and enable reliable robot autonomy in agricultural environments.
Fin-QD: A Computational Design Framework for Soft Grippers: Integrating MAP-Elites and High-fidelity FEM
Xie, Yue, Wang, Xing, Iida, Fumiya, Howard, David
Computational design can excite the full potential of soft robotics that has the drawbacks of being highly nonlinear from material, structure, and contact. Up to date, enthusiastic research interests have been demonstrated for individual soft fingers, but the frame design space (how each soft finger is assembled) remains largely unexplored. Computationally design remains challenging for the finger-based soft gripper to grip across multiple geometrical-distinct object types successfully. Including the design space for the gripper frame can bring huge difficulties for conventional optimisation algorithms and fitness calculation methods due to the exponential growth of high-dimensional design space. This work proposes an automated computational design optimisation framework that generates gripper diversity to individually grasp geometrically distinct object types based on a quality-diversity approach. This work first discusses a significantly large design space (28 design parameters) for a finger-based soft gripper, including the rarely-explored design space of finger arrangement that is converted to various configurations to arrange individual soft fingers. Then, a contact-based Finite Element Modelling (FEM) is proposed in SOFA to output high-fidelity grasping data for fitness evaluation and feature measurements. Finally, diverse gripper designs are obtained from the framework while considering features such as the volume and workspace of grippers. This work bridges the gap of computationally exploring the vast design space of finger-based soft grippers while grasping large geometrically distinct object types with a simple control scheme.
Leveraging Word Guessing Games to Assess the Intelligence of Large Language Models
Liang, Tian, He, Zhiwei, Huang, Jen-tse, Wang, Wenxuan, Jiao, Wenxiang, Wang, Rui, Yang, Yujiu, Tu, Zhaopeng, Shi, Shuming, Wang, Xing
The automatic evaluation of LLM-based agent intelligence is critical in developing advanced LLM-based agents. Although considerable effort has been devoted to developing human-annotated evaluation datasets, such as AlpacaEval, existing techniques are costly, time-consuming, and lack adaptability. In this paper, inspired by the popular language game ``Who is Spy'', we propose to use the word guessing game to assess the intelligence performance of LLMs. Given a word, the LLM is asked to describe the word and determine its identity (spy or not) based on its and other players' descriptions. Ideally, an advanced agent should possess the ability to accurately describe a given word using an aggressive description while concurrently maximizing confusion in the conservative description, enhancing its participation in the game. To this end, we first develop DEEP to evaluate LLMs' expression and disguising abilities. DEEP requires LLM to describe a word in aggressive and conservative modes. We then introduce SpyGame, an interactive multi-agent framework designed to assess LLMs' intelligence through participation in a competitive language-based board game. Incorporating multi-agent interaction, SpyGame requires the target LLM to possess linguistic skills and strategic thinking, providing a more comprehensive evaluation of LLMs' human-like cognitive abilities and adaptability in complex communication situations. The proposed evaluation framework is very easy to implement. We collected words from multiple sources, domains, and languages and used the proposed evaluation framework to conduct experiments. Extensive experiments demonstrate that the proposed DEEP and SpyGame effectively evaluate the capabilities of various LLMs, capturing their ability to adapt to novel situations and engage in strategic communication.
ParroT: Translating during Chat using Large Language Models tuned with Human Translation and Feedback
Jiao, Wenxiang, Huang, Jen-tse, Wang, Wenxuan, He, Zhiwei, Liang, Tian, Wang, Xing, Shi, Shuming, Tu, Zhaopeng
Large language models (LLMs) like ChatGPT have exhibited remarkable abilities on a wide range of natural language processing~(NLP) tasks, including various machine translation abilities accomplished during chat. However, these models are only accessible through restricted APIs, which creates barriers to new research and advancements in the field. Therefore, we propose ParroT, a framework to enhance and regulate the translation abilities during chat based on open-source LLMs (e.g., LLaMA), human-written translation and feedback data. Specifically, ParroT reformulates translation data into the instruction-following style, and introduces a "$\mathbf{Hint}$" field for incorporating extra requirements to regulate the translation process. Accordingly, we propose three instruction types for finetuning ParroT models, including translation instruction, contrastive instruction, and error-guided instruction. Experiments on Flores subsets and WMT22 test sets suggest that translation instruction improves the translation performance of vanilla LLMs significantly while error-guided instruction can lead to further improvement, which demonstrates the importance of learning from low-quality translations annotated by humans. We also demonstrate the potential of automatic evaluation tools in providing quality information of translations, when constructing error-guided instructions for directions that lack human annotation data. Please refer to our Github project for more implementation details: https://github.com/wxjiao/ParroT
Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine
Jiao, Wenxiang, Wang, Wenxuan, Huang, Jen-tse, Wang, Xing, Shi, Shuming, Tu, Zhaopeng
This report provides a preliminary evaluation of ChatGPT for machine translation, including translation prompt, multilingual translation, and translation robustness. We adopt the prompts advised by ChatGPT to trigger its translation ability and find that the candidate prompts generally work well with minor performance differences. By evaluating on a number of benchmark test sets, we find that ChatGPT performs competitively with commercial translation products (e.g., Google Translate) on high-resource European languages but lags behind significantly on low-resource or distant languages. As for the translation robustness, ChatGPT does not perform as well as the commercial systems on biomedical abstracts or Reddit comments but exhibits good results on spoken language. Further, we explore an interesting strategy named $\mathbf{pivot~prompting}$ for distant languages, which asks ChatGPT to translate the source sentence into a high-resource pivot language before into the target language, improving the translation performance noticeably. With the launch of the GPT-4 engine, the translation performance of ChatGPT is significantly boosted, becoming comparable to commercial translation products, even for distant languages. Human analysis on Google Translate and ChatGPT suggests that ChatGPT with GPT-3.5 tends to generate more hallucinations and mis-translation errors while that with GPT-4 makes the least errors. In other words, ChatGPT has already become a good translator. Please refer to our Github project for more details: https://github.com/wxjiao/Is-ChatGPT-A-Good-Translator
Cross-modality Data Augmentation for End-to-End Sign Language Translation
Ye, Jinhui, Jiao, Wenxiang, Wang, Xing, Tu, Zhaopeng, Xiong, Hui
End-to-end sign language translation (SLT) aims to convert sign language videos into spoken language texts directly without intermediate representations. It has been a challenging task due to the modality gap between sign videos and texts and the data scarcity of labeled data. To tackle these challenges, we propose a novel Cross-modality Data Augmentation (XmDA) framework to transfer the powerful gloss-to-text translation capabilities to end-to-end sign language translation (i.e. video-to-text) by exploiting pseudo gloss-text pairs from the sign gloss translation model. Specifically, XmDA consists of two key components, namely, cross-modality mix-up and cross-modality knowledge distillation. The former explicitly encourages the alignment between sign video features and gloss embeddings to bridge the modality gap. The latter utilizes the generation knowledge from gloss-to-text teacher models to guide the spoken language text generation. Experimental results on two widely used SLT datasets, i.e., PHOENIX-2014T and CSL-Daily, demonstrate that the proposed XmDA framework significantly and consistently outperforms the baseline models. Extensive analyses confirm our claim that XmDA enhances spoken language text generation by reducing the representation distance between videos and texts, as well as improving the processing of low-frequency words and long sentences.
MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time Series Forecasting
Wang, Xing, Wang, Zhendong, Yang, Kexin, Feng, Junlan, Song, Zhiyan, Deng, Chao, zhu, Lin
Long-term time series forecasting plays an important role in various real-world scenarios. Recent deep learning methods for long-term series forecasting tend to capture the intricate patterns of time series by decomposition-based or sampling-based methods. However, most of the extracted patterns may include unpredictable noise and lack good interpretability. Moreover, the multivariate series forecasting methods usually ignore the individual characteristics of each variate, which may affecting the prediction accuracy. To capture the intrinsic patterns of time series, we propose a novel deep learning network architecture, named Multi-resolution Periodic Pattern Network (MPPN), for long-term series forecasting. We first construct context-aware multi-resolution semantic units of time series and employ multi-periodic pattern mining to capture the key patterns of time series. Then, we propose a channel adaptive module to capture the perceptions of multivariate towards different patterns. In addition, we present an entropy-based method for evaluating the predictability of time series and providing an upper bound on the prediction accuracy before forecasting. Our experimental evaluation on nine real-world benchmarks demonstrated that MPPN significantly outperforms the state-of-the-art Transformer-based, decomposition-based and sampling-based methods for long-term series forecasting.
Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate
Liang, Tian, He, Zhiwei, Jiao, Wenxiang, Wang, Xing, Wang, Yan, Wang, Rui, Yang, Yujiu, Tu, Zhaopeng, Shi, Shuming
Modern large language models (LLMs) like ChatGPT have shown remarkable performance on general language tasks but still struggle on complex reasoning tasks, which drives the research on cognitive behaviors of LLMs to explore human-like problem-solving strategies. Along this direction, one representative strategy is self-reflection, which asks an LLM to refine the solution with the feedback generated by itself iteratively. However, our study shows that such reflection-style methods suffer from the Degeneration-of-Thought (DoT) problem: once the LLM has established confidence in its solutions, it is unable to generate novel thoughts later through reflection even if its initial stance is incorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution. Clearly, our MAD framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation. Experiment results on two challenging datasets, commonsense machine translation and counter-intuitive arithmetic reasoning, demonstrate the effectiveness of our MAD framework. Extensive analyses suggest that the adaptive break of debate and the modest level of "tit for tat" state are required for MAD to obtain good performance. Moreover, we find that LLMs might not be a fair judge if different LLMs are used for agents. Codes: https://github.com/Skytliang/Multi-Agents-Debate
Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
Wang, Xing, Yang, Kexin, Wang, Zhendong, Feng, Junlan, Zhu, Lin, Zhao, Juan, Deng, Chao
Cellular traffic prediction is an indispensable part for intelligent telecommunication networks. Nevertheless, due to the frequent user mobility and complex network scheduling mechanisms, cellular traffic often inherits complicated spatial-temporal patterns, making the prediction incredibly challenging. Although recent advanced algorithms such as graph-based prediction approaches have been proposed, they frequently model spatial dependencies based on static or dynamic graphs and neglect the coexisting multiple spatial correlations induced by traffic generation. Meanwhile, some works lack the consideration of the diverse cellular traffic patterns, result in suboptimal prediction results. In this paper, we propose a novel deep learning network architecture, Adaptive Hybrid Spatial-Temporal Graph Neural Network (AHSTGNN), to tackle the cellular traffic prediction problem. First, we apply adaptive hybrid graph learning to learn the compound spatial correlations among cell towers. Second, we implement a Temporal Convolution Module with multi-periodic temporal data input to capture the nonlinear temporal dependencies. In addition, we introduce an extra Spatial-Temporal Adaptive Module to conquer the heterogeneity lying in cell towers. Our experiments on two real-world cellular traffic datasets show AHSTGNN outperforms the state-of-the-art by a significant margin, illustrating the superior scalability of our method for spatial-temporal cellular traffic prediction.
Scaling Back-Translation with Domain Text Generation for Sign Language Gloss Translation
Ye, Jinhui, Jiao, Wenxiang, Wang, Xing, Tu, Zhaopeng
Sign language gloss translation aims to translate the sign glosses into spoken language texts, which is challenging due to the scarcity of labeled gloss-text parallel data. Back translation (BT), which generates pseudo-parallel data by translating in-domain spoken language texts into sign glosses, has been applied to alleviate the data scarcity problem. However, the lack of large-scale high-quality domain spoken language text data limits the effect of BT. In this paper, to overcome the limitation, we propose a Prompt based domain text Generation (PGEN) approach to produce the large-scale in-domain spoken language text data. Specifically, PGEN randomly concatenates sentences from the original in-domain spoken language text data as prompts to induce a pre-trained language model (i.e., GPT-2) to generate spoken language texts in a similar style. Experimental results on three benchmarks of sign language gloss translation in varied languages demonstrate that BT with spoken language texts generated by PGEN significantly outperforms the compared methods. In addition, as the scale of spoken language texts generated by PGEN increases, the BT technique can achieve further improvements, demonstrating the effectiveness of our approach. We release the code and data for facilitating future research in this field.