Not enough data to create a plot.
Try a different view from the menu above.
Wang, Xiaoqian
Multiclass Capped ℓp-Norm SVM for Robust Classifications
Nie, Feiping (Northwestern Polytechnical University) | Wang, Xiaoqian (University of Texas at Arlington) | Huang, Heng (University of Texas at Arlington)
Support vector machine (SVM) model is one of most successful machine learning methods and has been successfully applied to solve numerous real-world application. Because the SVM methods use the hinge loss or squared hinge loss functions for classifications, they usually outperform other classification approaches, e.g. the least square loss function based methods. However, like most supervised learning algorithms, they learn classifiers based on the labeled data in training set without specific strategy to deal with the noise data. In many real-world applications, we often have data outliers in train set, which could misguide the classifiers learning, such that the classification performance is suboptimal. To address this problem, we proposed a novel capped Lp-norm SVM classification model by utilizing the capped `p-norm based hinge loss in the objective which can deal with both light and heavy outliers. We utilize the new formulation to naturally build the multiclass capped Lp-norm SVM. More importantly, we derive a novel optimization algorithms to efficiently minimize the capped Lp-norm based objectives, and also rigorously prove the convergence of proposed algorithms. We present experimental results showing that employing the new capped Lp-norm SVM method can consistently improve the classification performance, especially in the cases when the data noise level increases.
The Constrained Laplacian Rank Algorithm for Graph-Based Clustering
Nie, Feiping (University of Texas at Arlington) | Wang, Xiaoqian (University of Texas at Arlington) | Jordan, Michael I. (University of California, Berkeley) | Huang, Heng (University of Texas at Arlington)
Graph-based clustering methods perform clustering on a fixed input data graph. If this initial construction is of low quality then the resulting clustering may also be of low quality. Moreover, existing graph-based clustering methods require post-processing on the data graph to extract the clustering indicators. We address both of these drawbacks by allowing the data graph itself to be adjusted as part of the clustering procedure. In particular, our Constrained Laplacian Rank (CLR) method learns a graph with exactly k connected components (where k is the number of clusters). We develop two versions of this method, based upon the L1-norm and the L2-norm, which yield two new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic datasets and real-world benchmark datasets exhibit the effectiveness of this new graph-based clustering method.