Wang, Wenxiao
On Practical Aspects of Aggregation Defenses against Data Poisoning Attacks
Wang, Wenxiao, Feizi, Soheil
The increasing access to data poses both opportunities and risks in deep learning, as one can manipulate the behaviors of deep learning models with malicious training samples. Such attacks are known as data poisoning. Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving state-of-the-art results in certified poisoning robustness. However, the practical implications of these approaches remain unclear. Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness. For evaluations, we use ImageNet resized to a resolution of 64 by 64 to enable evaluations at a larger scale than previous ones. Firstly, we demonstrate a simple yet practical approach to scaling base models, which improves the efficiency of training and inference for aggregation defenses. Secondly, we provide empirical evidence supporting the data-to-complexity ratio, i.e. the ratio between the data set size and sample complexity, as a practical estimation of the maximum number of base models that can be deployed while preserving accuracy. Last but not least, we point out how aggregation defenses boost poisoning robustness empirically through the poisoning overfitting phenomenon, which is the key underlying mechanism for the empirical poisoning robustness of aggregations. Overall, our findings provide valuable insights for practical implementations of aggregation defenses to mitigate the threat of data poisoning.
Neural Collapse Inspired Federated Learning with Non-iid Data
Huang, Chenxi, Xie, Liang, Yang, Yibo, Wang, Wenxiao, Lin, Binbin, Cai, Deng
One of the challenges in federated learning is the non-independent and identically distributed (non-iid) characteristics between heterogeneous devices, which cause significant differences in local updates and affect the performance of the central server. Although many studies have been proposed to address this challenge, they only focus on local training and aggregation processes to smooth the changes and fail to achieve high performance with deep learning models. Inspired by the phenomenon of neural collapse, we force each client to be optimized toward an optimal global structure for classification. Specifically, we initialize it as a random simplex Equiangular Tight Frame (ETF) and fix it as the unit optimization target of all clients during the local updating. After guaranteeing all clients are learning to converge to the global optimum, we propose to add a global memory vector for each category to remedy the parameter fluctuation caused by the bias of the intra-class condition distribution among clients. Our experimental results show that our method can improve the performance with faster convergence speed on different-size datasets.
CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation
Lin, Yuqi, Chen, Minghao, Wang, Wenxiao, Wu, Boxi, Li, Ke, Lin, Binbin, Liu, Haifeng, He, Xiaofei
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) focus on confident regions. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation
Wang, Wenxiao, Levine, Alexander, Feizi, Soheil
Data poisoning attacks aim at manipulating model behaviors through distorting training data. Previously, an aggregation-based certified defense, Deep Partition Aggregation (DPA), was proposed to mitigate this threat. DPA predicts through an aggregation of base classifiers trained on disjoint subsets of data, thus restricting its sensitivity to dataset distortions. In this work, we propose an improved certified defense against general poisoning attacks, namely Finite Aggregation. In contrast to DPA, which directly splits the training set into disjoint subsets, our method first splits the training set into smaller disjoint subsets and then combines duplicates of them to build larger (but not disjoint) subsets for training base classifiers. This reduces the worst-case impacts of poison samples and thus improves certified robustness bounds. In addition, we offer an alternative view of our method, bridging the designs of deterministic and stochastic aggregation-based certified defenses. Empirically, our proposed Finite Aggregation consistently improves certificates on MNIST, CIFAR-10, and GTSRB, boosting certified fractions by up to 3.05%, 3.87% and 4.77%, respectively, while keeping the same clean accuracies as DPA's, effectively establishing a new state of the art in (pointwise) certified robustness against data poisoning.
On Feature Decorrelation in Self-Supervised Learning
Hua, Tianyu, Wang, Wenxiao, Xue, Zihui, Wang, Yue, Ren, Sucheng, Zhao, Hang
In self-supervised representation learning, a common idea behind most of the state-of-the-art approaches is to enforce the robustness of the representations to predefined augmentations. A potential issue of this idea is the existence of completely collapsed solutions (i.e., constant features), which are typically avoided implicitly by carefully chosen implementation details. In this work, we study a relatively concise framework containing the most common components from recent approaches. We verify the existence of complete collapse and discover another reachable collapse pattern that is usually overlooked, namely dimensional collapse. We connect dimensional collapse with strong correlations between axes and consider such connection as a strong motivation for feature decorrelation (i.e., standardizing the covariance matrix). The capability of correlation as an unsupervised metric and the gains from feature decorrelation are verified empirically to highlight the importance and the potential of this insight.
DPlis: Boosting Utility of Differentially Private Deep Learning via Randomized Smoothing
Wang, Wenxiao, Wang, Tianhao, Wang, Lun, Luo, Nanqing, Zhou, Pan, Song, Dawn, Jia, Ruoxi
Deep learning techniques have achieved remarkable performance in wide-ranging tasks. However, when trained on privacy-sensitive datasets, the model parameters may expose private information in training data. Prior attempts for differentially private training, although offering rigorous privacy guarantees, lead to much lower model performance than the non-private ones. Besides, different runs of the same training algorithm produce models with large performance variance. To address these issues, we propose DPlis--Differentially Private Learning wIth Smoothing. The core idea of DPlis is to construct a smooth loss function that favors noise-resilient models lying in large flat regions of the loss landscape. We provide theoretical justification for the utility improvements of DPlis. Extensive experiments also demonstrate that DPlis can effectively boost model quality and training stability under a given privacy budget.