Wang, Wen
Improving Long Document Topic Segmentation Models With Enhanced Coherence Modeling
Yu, Hai, Deng, Chong, Zhang, Qinglin, Liu, Jiaqing, Chen, Qian, Wang, Wen
Topic segmentation is critical for obtaining structured documents and improving downstream tasks such as information retrieval. Due to its ability of automatically exploring clues of topic shift from abundant labeled data, recent supervised neural models have greatly promoted the development of long document topic segmentation, but leaving the deeper relationship between coherence and topic segmentation underexplored. Therefore, this paper enhances the ability of supervised models to capture coherence from both logical structure and semantic similarity perspectives to further improve the topic segmentation performance, proposing Topic-aware Sentence Structure Prediction (TSSP) and Contrastive Semantic Similarity Learning (CSSL). Specifically, the TSSP task is proposed to force the model to comprehend structural information by learning the original relations between adjacent sentences in a disarrayed document, which is constructed by jointly disrupting the original document at topic and sentence levels. Moreover, we utilize inter- and intra-topic information to construct contrastive samples and design the CSSL objective to ensure that the sentences representations in the same topic have higher similarity, while those in different topics are less similar. Extensive experiments show that the Longformer with our approach significantly outperforms old state-of-the-art (SOTA) methods. Our approach improve $F_1$ of old SOTA by 3.42 (73.74 -> 77.16) and reduces $P_k$ by 1.11 points (15.0 -> 13.89) on WIKI-727K and achieves an average relative reduction of 4.3% on $P_k$ on WikiSection. The average relative $P_k$ drop of 8.38% on two out-of-domain datasets also demonstrates the robustness of our approach.
LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
Wang, Jiaming, Du, Zhihao, Chen, Qian, Chu, Yunfei, Gao, Zhifu, Li, Zerui, Hu, Kai, Zhou, Xiaohuan, Xu, Jin, Ma, Ziyang, Wang, Wen, Zheng, Siqi, Zhou, Chang, Yan, Zhijie, Zhang, Shiliang
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks. However, there has been limited research on applying similar frameworks to audio tasks. Previously proposed large language models for audio tasks either lack sufficient quantitative evaluations, or are limited to tasks for recognizing and understanding audio content, or significantly underperform existing state-of-the-art (SOTA) models. In this paper, we propose LauraGPT, a unified GPT model for audio recognition, understanding, and generation. LauraGPT is a versatile language model that can process both audio and text inputs and generate outputs in either modalities. It can perform a wide range of tasks related to content, semantics, paralinguistics, and audio-signal analysis. Some of its noteworthy tasks include automatic speech recognition, speech-to-text translation, text-to-speech synthesis, machine translation, speech enhancement, automated audio captioning, speech emotion recognition, and spoken language understanding. To achieve this goal, we use a combination of continuous and discrete features for audio. We encode input audio into continuous representations using an audio encoder and decode output audio from discrete codec codes. We then fine-tune a large decoder-only Transformer-based language model on multiple audio-to-text, text-to-audio, audio-to-audio, and text-to-text tasks using a supervised multitask learning approach. Extensive experiments show that LauraGPT achieves competitive or superior performance compared to existing SOTA models on various audio processing benchmarks.
Enhancing Multi-modal and Multi-hop Question Answering via Structured Knowledge and Unified Retrieval-Generation
Yang, Qian, Chen, Qian, Wang, Wen, Hu, Baotian, Zhang, Min
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities. Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences, and thus do not adequately connect candidates and are unable to model the interdependent relations during retrieval. Moreover, the pipelined approaches of retrieval and generation might result in poor generation performance when retrieval performance is low. To address these issues, we propose a Structured Knowledge and Unified Retrieval-Generation (SKURG) approach. SKURG employs an Entity-centered Fusion Encoder to align sources from different modalities using shared entities. It then uses a unified Retrieval-Generation Decoder to integrate intermediate retrieval results for answer generation and also adaptively determine the number of retrieval steps. Extensive experiments on two representative multi-modal multi-hop QA datasets MultimodalQA and WebQA demonstrate that SKURG outperforms the state-of-the-art models in both source retrieval and answer generation performance with fewer parameters. Our code is available at https://github.com/HITsz-TMG/SKURG.
DePA: Improving Non-autoregressive Machine Translation with Dependency-Aware Decoder
Zhan, Jiaao, Chen, Qian, Chen, Boxing, Wang, Wen, Bai, Yu, Gao, Yang
Non-autoregressive machine translation (NAT) models have lower translation quality than autoregressive translation (AT) models because NAT decoders do not depend on previous target tokens in the decoder input. We propose a novel and general Dependency-Aware Decoder (DePA) to enhance target dependency modeling in the decoder of fully NAT models from two perspectives: decoder self-attention and decoder input. First, we propose an autoregressive forward-backward pre-training phase before NAT training, which enables the NAT decoder to gradually learn bidirectional target dependencies for the final NAT training. Second, we transform the decoder input from the source language representation space to the target language representation space through a novel attentive transformation process, which enables the decoder to better capture target dependencies. DePA can be applied to any fully NAT models. Extensive experiments show that DePA consistently improves highly competitive and state-of-the-art fully NAT models on widely used WMT and IWSLT benchmarks by up to 1.88 BLEU gain, while maintaining the inference latency comparable to other fully NAT models.
Improving BERT with Hybrid Pooling Network and Drop Mask
Chen, Qian, Wang, Wen, Zhang, Qinglin, Deng, Chong, Yukun, Ma, Zheng, Siqi
Transformer-based pre-trained language models, such as BERT, achieve great success in various natural language understanding tasks. Prior research found that BERT captures a rich hierarchy of linguistic information at different layers. However, the vanilla BERT uses the same self-attention mechanism for each layer to model the different contextual features. In this paper, we propose a HybridBERT model which combines self-attention and pooling networks to encode different contextual features in each layer. Additionally, we propose a simple DropMask method to address the mismatch between pre-training and fine-tuning caused by excessive use of special mask tokens during Masked Language Modeling pre-training. Experiments show that HybridBERT outperforms BERT in pre-training with lower loss, faster training speed (8% relative), lower memory cost (13% relative), and also in transfer learning with 1.5% relative higher accuracies on downstream tasks. Additionally, DropMask improves accuracies of BERT on downstream tasks across various masking rates.
Exploiting Correlations Between Contexts and Definitions with Multiple Definition Modeling
Zhang, Linhan, Chen, Qian, Wang, Wen, Jiang, Yuxin, Li, Bing, Wang, Wei, Cao, Xin
Definition modeling is an important task in advanced natural language applications such as understanding and conversation. Since its introduction, it focus on generating one definition for a target word or phrase in a given context, which we refer to as Single Definition Modeling (SDM). However, this approach does not adequately model the correlations and patterns among different contexts and definitions of words. In addition, the creation of a training dataset for SDM requires significant human expertise and effort. In this paper, we carefully design a new task called Multiple Definition Modeling (MDM) that pool together all contexts and definition of target words. We demonstrate the ease of creating a model as well as multiple training sets automatically. % In the experiments, we demonstrate and analyze the benefits of MDM, including improving SDM's performance by using MDM as the pretraining task and its comparable performance in the zero-shot setting.
Weighted Sampling for Masked Language Modeling
Zhang, Linhan, Chen, Qian, Wang, Wen, Deng, Chong, Cao, Xin, Hao, Kongzhang, Jiang, Yuxin, Wang, Wei
Masked Language Modeling (MLM) is widely used to pretrain language models. The standard random masking strategy in MLM causes the pre-trained language models (PLMs) to be biased toward high-frequency tokens. Representation learning of rare tokens is poor and PLMs have limited performance on downstream tasks. To alleviate this frequency bias issue, we propose two simple and effective Weighted Sampling strategies for masking tokens based on the token frequency and training loss. We apply these two strategies to BERT and obtain Weighted-Sampled BERT (WSBERT). Experiments on the Semantic Textual Similarity benchmark (STS) show that WSBERT significantly improves sentence embeddings over BERT. Combining WSBERT with calibration methods and prompt learning further improves sentence embeddings. We also investigate fine-tuning WSBERT on the GLUE benchmark and show that Weighted Sampling also improves the transfer learning capability of the backbone PLM. We further analyze and provide insights into how WSBERT improves token embeddings.
Diffsound: Discrete Diffusion Model for Text-to-sound Generation
Yang, Dongchao, Yu, Jianwei, Wang, Helin, Wang, Wen, Weng, Chao, Zou, Yuexian, Yu, Dong
Generating sound effects that humans want is an important topic. However, there are few studies in this area for sound generation. In this study, we investigate generating sound conditioned on a text prompt and propose a novel text-to-sound generation framework that consists of a text encoder, a Vector Quantized Variational Autoencoder (VQ-VAE), a decoder, and a vocoder. The framework first uses the decoder to transfer the text features extracted from the text encoder to a mel-spectrogram with the help of VQ-VAE, and then the vocoder is used to transform the generated mel-spectrogram into a waveform. We found that the decoder significantly influences the generation performance. Thus, we focus on designing a good decoder in this study. We begin with the traditional autoregressive decoder, which has been proved as a state-of-the-art method in previous sound generation works. However, the AR decoder always predicts the mel-spectrogram tokens one by one in order, which introduces the unidirectional bias and accumulation of errors problems. Moreover, with the AR decoder, the sound generation time increases linearly with the sound duration. To overcome the shortcomings introduced by AR decoders, we propose a non-autoregressive decoder based on the discrete diffusion model, named Diffsound. Specifically, the Diffsound predicts all of the mel-spectrogram tokens in one step and then refines the predicted tokens in the next step, so the best-predicted results can be obtained after several steps. Our experiments show that our proposed Diffsound not only produces better text-to-sound generation results when compared with the AR decoder but also has a faster generation speed, e.g., MOS: 3.56 \textit{v.s} 2.786, and the generation speed is five times faster than the AR decoder.
Meeting Action Item Detection with Regularized Context Modeling
Liu, Jiaqing, Deng, Chong, Zhang, Qinglin, Chen, Qian, Wang, Wen
Meetings are increasingly important for collaborations. Action items in meeting transcripts are crucial for managing post-meeting to-do tasks, which usually are summarized laboriously. The Action Item Detection task aims to automatically detect meeting content associated with action items. However, datasets manually annotated with action item detection labels are scarce and in small scale. We construct and release the first Chinese meeting corpus with manual action item annotations. In addition, we propose a Context-Drop approach to utilize both local and global contexts by contrastive learning, and achieve better accuracy and robustness for action item detection. We also propose a Lightweight Model Ensemble method to exploit different pre-trained models. Experimental results on our Chinese meeting corpus and the English AMI corpus demonstrate the effectiveness of the proposed approaches.
MUG: A General Meeting Understanding and Generation Benchmark
Zhang, Qinglin, Deng, Chong, Liu, Jiaqing, Yu, Hai, Chen, Qian, Wang, Wen, Yan, Zhijie, Liu, Jinglin, Ren, Yi, Zhao, Zhou
Listening to long video/audio recordings from video conferencing and online courses for acquiring information is extremely inefficient. Even after ASR systems transcribe recordings into long-form spoken language documents, reading ASR transcripts only partly speeds up seeking information. It has been observed that a range of NLP applications, such as keyphrase extraction, topic segmentation, and summarization, significantly improve users' efficiency in grasping important information. The meeting scenario is among the most valuable scenarios for deploying these spoken language processing (SLP) capabilities. However, the lack of large-scale public meeting datasets annotated for these SLP tasks severely hinders their advancement. To prompt SLP advancement, we establish a large-scale general Meeting Understanding and Generation Benchmark (MUG) to benchmark the performance of a wide range of SLP tasks, including topic segmentation, topic-level and session-level extractive summarization and topic title generation, keyphrase extraction, and action item detection. To facilitate the MUG benchmark, we construct and release a large-scale meeting dataset for comprehensive long-form SLP development, the AliMeeting4MUG Corpus, which consists of 654 recorded Mandarin meeting sessions with diverse topic coverage, with manual annotations for SLP tasks on manual transcripts of meeting recordings. To the best of our knowledge, the AliMeeting4MUG Corpus is so far the largest meeting corpus in scale and facilitates most SLP tasks. In this paper, we provide a detailed introduction of this corpus, SLP tasks and evaluation methods, baseline systems and their performance.