Goto

Collaborating Authors

 Wang, Weiqi


EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph Completion

arXiv.org Artificial Intelligence

Commonsense knowledge graph completion is a new challenge for commonsense knowledge graph construction and application. In contrast to factual knowledge graphs such as Freebase and YAGO, commonsense knowledge graphs (CSKGs; e.g., ConceptNet) utilize free-form text to represent named entities, short phrases, and events as their nodes. Such a loose structure results in large and sparse CSKGs, which makes the semantic understanding of these nodes more critical for learning rich commonsense knowledge graph embedding. While current methods leverage semantic similarities to increase the graph density, the semantic plausibility of the nodes and their relations are under-explored. Previous works adopt conceptual abstraction to improve the consistency of modeling (event) plausibility, but they are not scalable enough and still suffer from data sparsity. In this paper, we propose to adopt textual entailment to find implicit entailment relations between CSKG nodes, to effectively densify the subgraph connecting nodes within the same conceptual class, which indicates a similar level of plausibility. Each node in CSKG finds its top entailed nodes using a finetuned transformer over natural language inference (NLI) tasks, which sufficiently capture textual entailment signals. The entailment relation between these nodes are further utilized to: 1) build new connections between source triplets and entailed nodes to densify the sparse CSKGs; 2) enrich the generalization ability of node representations by comparing the node embeddings with a contrastive loss. Experiments on two standard CSKGs demonstrate that our proposed framework EntailE can improve the performance of CSKG completion tasks under both transductive and inductive settings.


CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning

arXiv.org Artificial Intelligence

The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavily rely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE, a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC, we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across four downstream tasks. Our code, data, and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.


Compressive Fourier collocation methods for high-dimensional diffusion equations with periodic boundary conditions

arXiv.org Artificial Intelligence

High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.


AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph

arXiv.org Artificial Intelligence

Cognitive research indicates that abstraction ability is essential in human intelligence, which remains under-explored in language models. In this paper, we present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge. While existing resources only touch nouns or verbs within simplified events or specific domains, AbsPyramid collects abstract knowledge for three components of diverse events to comprehensively evaluate the abstraction ability of language models in the open domain. Experimental results demonstrate that current LLMs face challenges comprehending abstraction knowledge in zero-shot and few-shot settings. By training on our rich abstraction knowledge, we find LLMs can acquire basic abstraction abilities and generalize to unseen events. In the meantime, we empirically show that our benchmark is comprehensive to enhance LLMs across two previous abstraction tasks.


Complex Query Answering on Eventuality Knowledge Graph with Implicit Logical Constraints

arXiv.org Artificial Intelligence

Querying knowledge graphs (KGs) using deep learning approaches can naturally leverage the reasoning and generalization ability to learn to infer better answers. Traditional neural complex query answering (CQA) approaches mostly work on entity-centric KGs. However, in the real world, we also need to make logical inferences about events, states, and activities (i.e., eventualities or situations) to push learning systems from System I to System II, as proposed by Yoshua Bengio. Querying logically from an EVentuality-centric KG (EVKG) can naturally provide references to such kind of intuitive and logical inference. Thus, in this paper, we propose a new framework to leverage neural methods to answer complex logical queries based on an EVKG, which can satisfy not only traditional first-order logic constraints but also implicit logical constraints over eventualities concerning their occurrences and orders. For instance, if we know that "Food is bad" happens before "PersonX adds soy sauce", then "PersonX adds soy sauce" is unlikely to be the cause of "Food is bad" due to implicit temporal constraint. To facilitate consistent reasoning on EVKGs, we propose Complex Eventuality Query Answering (CEQA), a more rigorous definition of CQA that considers the implicit logical constraints governing the temporal order and occurrence of eventualities. In this manner, we propose to leverage theorem provers for constructing benchmark datasets to ensure the answers satisfy implicit logical constraints. We also propose a Memory-Enhanced Query Encoding (MEQE) approach to significantly improve the performance of state-of-the-art neural query encoders on the CEQA task.


StoryAnalogy: Deriving Story-level Analogies from Large Language Models to Unlock Analogical Understanding

arXiv.org Artificial Intelligence

Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, \textsc{StoryAnalogy}, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on \textsc{StoryAnalogy}, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in \textsc{StoryAnalogy} can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.


CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering

arXiv.org Artificial Intelligence

The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pretraining the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false-negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our codes, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.


Gold: A Global and Local-aware Denoising Framework for Commonsense Knowledge Graph Noise Detection

arXiv.org Artificial Intelligence

Commonsense Knowledge Graphs (CSKGs) are crucial for commonsense reasoning, yet constructing them through human annotations can be costly. As a result, various automatic methods have been proposed to construct CSKG with larger semantic coverage. However, these unsupervised approaches introduce spurious noise that can lower the quality of the resulting CSKG, which cannot be tackled easily by existing denoising algorithms due to the unique characteristics of nodes and structures in CSKGs. To address this issue, we propose Gold (Global and Local-aware Denoising), a denoising framework for CSKGs that incorporates entity semantic information, global rules, and local structural information from the CSKG. Experiment results demonstrate that Gold outperforms all baseline methods in noise detection tasks on synthetic noisy CSKG benchmarks. Furthermore, we show that denoising a real-world CSKG is effective and even benefits the downstream zero-shot commonsense question-answering task.


QADYNAMICS: Training Dynamics-Driven Synthetic QA Diagnostic for Zero-Shot Commonsense Question Answering

arXiv.org Artificial Intelligence

Zero-shot commonsense Question-Answering (QA) requires models to reason about general situations beyond specific benchmarks. State-of-the-art approaches fine-tune language models on QA pairs constructed from CommonSense Knowledge Bases (CSKBs) to equip the models with more commonsense knowledge in a QA context. However, current QA synthesis protocols may introduce noise from the CSKBs and generate ungrammatical questions and false negative options, which impede the model's ability to generalize. To address these issues, we propose QADYNAMICS, a training dynamics-driven framework for QA diagnostics and refinement. Our approach analyzes the training dynamics of each QA pair at both the question level and option level, discarding machine-detectable artifacts by removing uninformative QA pairs and mislabeled or false-negative options. Extensive experiments demonstrate the effectiveness of our approach, which outperforms all baselines while using only 33% of the synthetic data, even including LLMs such as ChatGPT. Moreover, expert evaluations confirm that our framework significantly improves the quality of QA synthesis. Our codes and model checkpoints are available at https://github.com/HKUST-KnowComp/QaDynamics.


TILFA: A Unified Framework for Text, Image, and Layout Fusion in Argument Mining

arXiv.org Artificial Intelligence

A main goal of Argument Mining (AM) is to analyze an author's stance. Unlike previous AM datasets focusing only on text, the shared task at the 10th Workshop on Argument Mining introduces a dataset including both text and images. Importantly, these images contain both visual elements and optical characters. Our new framework, TILFA (A Unified Framework for Text, Image, and Layout Fusion in Argument Mining), is designed to handle this mixed data. It excels at not only understanding text but also detecting optical characters and recognizing layout details in images. Our model significantly outperforms existing baselines, earning our team, KnowComp, the 1st place in the leaderboard of Argumentative Stance Classification subtask in this shared task.