Goto

Collaborating Authors

 Wang, Tianyu


Image sensing with multilayer, nonlinear optical neural networks

arXiv.org Artificial Intelligence

Optical imaging is commonly used for both scientific and technological applications across industry and academia. In image sensing, a measurement, such as of an object's position, is performed by computational analysis of a digitized image. An emerging image-sensing paradigm breaks this delineation between data collection and analysis by designing optical components to perform not imaging, but encoding. By optically encoding images into a compressed, low-dimensional latent space suitable for efficient post-analysis, these image sensors can operate with fewer pixels and fewer photons, allowing higher-throughput, lower-latency operation. Optical neural networks (ONNs) offer a platform for processing data in the analog, optical domain. ONN-based sensors have however been limited to linear processing, but nonlinearity is a prerequisite for depth, and multilayer NNs significantly outperform shallow NNs on many tasks. Here, we realize a multilayer ONN pre-processor for image sensing, using a commercial image intensifier as a parallel optoelectronic, optical-to-optical nonlinear activation function. We demonstrate that the nonlinear ONN pre-processor can achieve compression ratios of up to 800:1 while still enabling high accuracy across several representative computer-vision tasks, including machine-vision benchmarks, flow-cytometry image classification, and identification of objects in real scenes. In all cases we find that the ONN's nonlinearity and depth allowed it to outperform a purely linear ONN encoder. Although our experiments are specialized to ONN sensors for incoherent-light images, alternative ONN platforms should facilitate a range of ONN sensors. These ONN sensors may surpass conventional sensors by pre-processing optical information in spatial, temporal, and/or spectral dimensions, potentially with coherent and quantum qualities, all natively in the optical domain.


Towards Sharp Stochastic Zeroth Order Hessian Estimators over Riemannian Manifolds

arXiv.org Machine Learning

We study Hessian estimators for real-valued functions defined over an $n$-dimensional complete Riemannian manifold. We introduce new stochastic zeroth-order Hessian estimators using $O (1)$ function evaluations. We show that, for a smooth real-valued function $f$ with Lipschitz Hessian (with respect to the Rimannian metric), our estimator achieves a bias bound of order $ O \left( L_2 \delta + \gamma \delta^2 \right) $, where $ L_2 $ is the Lipschitz constant for the Hessian, $ \gamma $ depends on both the Levi-Civita connection and function $f$, and $\delta$ is the finite difference step size. To the best of our knowledge, our results provide the first bias bound for Hessian estimators that explicitly depends on the geometry of the underlying Riemannian manifold. Perhaps more importantly, our bias bound does not increase with dimension $n$. This improves best previously known bias bound for $O(1)$-evaluation Hessian estimators, which increases quadratically with $n$. We also study downstream computations based on our Hessian estimators. The supremacy of our method is evidenced by empirical evaluations.


Adaptive Discretization for Model-Based Reinforcement Learning

arXiv.org Machine Learning

We introduce the technique of adaptive discretization to design an efficient model-based episodic reinforcement learning algorithm in large (potentially continuous) state-action spaces. Our algorithm is based on optimistic one-step value iteration extended to maintain an adaptive discretization of the space. From a theoretical perspective we provide worst-case regret bounds for our algorithm which are competitive compared to the state-of-the-art model-based algorithms. Moreover, our bounds are obtained via a modular proof technique which can potentially extend to incorporate additional structure on the problem. From an implementation standpoint, our algorithm has much lower storage and computational requirements due to maintaining a more efficient partition of the state and action spaces. We illustrate this via experiments on several canonical control problems, which shows that our algorithm empirically performs significantly better than fixed discretization in terms of both faster convergence and lower memory usage. Interestingly, we observe empirically that while fixed-discretization model-based algorithms vastly outperform their model-free counterparts, the two achieve comparable performance with adaptive discretization.


Bandits for BMO Functions

arXiv.org Machine Learning

We study the bandit problem where the underlying expected reward is a Bounded Mean Oscillation (BMO) function. BMO functions are allowed to be discontinuous and unbounded, and are useful in modeling signals with infinities in the do-main. We develop a toolset for BMO bandits, and provide an algorithm that can achieve poly-log $\delta$-regret -- a regret measured against an arm that is optimal after removing a $\delta$-sized portion of the arm space.


Learning Navigation Costs from Demonstration with Semantic Observations

arXiv.org Machine Learning

This paper focuses on inverse reinforcement learning (IRL) for autonomous robot navigation using semantic observations. The objective is to infer a cost function that explains demonstrated behavior while relying only on the expert's observations and state-control trajectory. We develop a map encoder, which infers semantic class probabilities from the observation sequence, and a cost encoder, defined as deep neural network over the semantic features. Since the expert cost is not directly observable, the representation parameters can only be optimized by differentiating the error between demonstrated controls and a control policy computed from the cost estimate. The error is optimized using a closed-form subgradient computed only over a subset of promising states via a motion planning algorithm. We show that our approach learns to follow traffic rules in the autonomous driving CARLA simulator by relying on semantic observations of cars, sidewalks and road lanes.


A Practical Bandit Method with Advantages in Neural Network Tuning

arXiv.org Machine Learning

Stochastic bandit algorithms can be used for challenging non-convex optimization problems. Hyperparameter tuning of neural networks is particularly challenging, necessitating new approaches. To this end, we present a method that adaptively partitions the combined space of hyperparameters, context, and training resources (e.g., total number of training iterations). By adaptively partitioning the space, the algorithm is able to focus on the portions of the hyperparameter search space that are most relevant in a practical way. By including the resources in the combined space, the method tends to use fewer training resources overall. Our experiments show that this method can surpass state-of-the-art methods in tuning neural networks on benchmark datasets. In some cases, our implementations can achieve the same levels of accuracy on benchmark datasets as existing state-of-the-art approaches while saving over 50% of our computational resources (e.g. time, training iterations).


FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference

arXiv.org Machine Learning

A classical problem in causal inference is that of matching, where treatment units need to be matched to control units. Some of the main challenges in developing matching methods arise from the tension among (i) inclusion of as many covariates as possible in defining the matched groups, (ii) having matched groups with enough treated and control units for a valid estimate of Average Treatment Effect (ATE) in each group, and (iii) computing the matched pairs efficiently for large datasets. In this paper we propose a fast method for approximate and exact matching in causal analysis called FLAME (Fast Large-scale Almost Matching Exactly). We define an optimization objective for match quality, which gives preferences to matching on covariates that can be useful for predicting the outcome while encouraging as many matches as possible. FLAME aims to optimize our match quality measure, leveraging techniques that are natural for query processing in the area of database management. We provide two implementations of FLAME using SQL queries and bit-vector techniques.