Plotting

 Wang, Tao


Implementing Trust in Non-Small Cell Lung Cancer Diagnosis with a Conformalized Uncertainty-Aware AI Framework in Whole-Slide Images

arXiv.org Artificial Intelligence

Ensuring trustworthiness is fundamental to the development of artificial intelligence (AI) that is considered societally responsible, particularly in cancer diagnostics, where a misdiagnosis can have dire consequences. Current digital pathology AI models lack systematic solutions to address trustworthiness concerns arising from model limitations and data discrepancies between model deployment and development environments. To address this issue, we developed TRUECAM, a framework designed to ensure both data and model trustworthiness in non-small cell lung cancer subtyping with whole-slide images. TRUECAM integrates 1) a spectral-normalized neural Gaussian process for identifying out-of-scope inputs and 2) an ambiguity-guided elimination of tiles to filter out highly ambiguous regions, addressing data trustworthiness, as well as 3) conformal prediction to ensure controlled error rates. We systematically evaluated the framework across multiple large-scale cancer datasets, leveraging both task-specific and foundation models, illustrate that an AI model wrapped with TRUECAM significantly outperforms models that lack such guidance, in terms of classification accuracy, robustness, interpretability, and data efficiency, while also achieving improvements in fairness.


OpenAI o1 System Card

arXiv.org Artificial Intelligence

The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.


Red Pill and Blue Pill: Controllable Website Fingerprinting Defense via Dynamic Backdoor Learning

arXiv.org Artificial Intelligence

Website fingerprint (WF) attacks, which covertly monitor user communications to identify the web pages they visit, pose a serious threat to user privacy. Existing WF defenses attempt to reduce the attacker's accuracy by disrupting unique traffic patterns; however, they often suffer from the trade-off between overhead and effectiveness, resulting in less usefulness in practice. To overcome this limitation, we introduce Controllable Website Fingerprint Defense (CWFD), a novel defense perspective based on backdoor learning. CWFD exploits backdoor vulnerabilities in neural networks to directly control the attacker's model by designing trigger patterns based on network traffic. Specifically, CWFD injects only incoming packets on the server side into the target web page's traffic, keeping overhead low while effectively poisoning the attacker's model during training. During inference, the defender can influence the attacker's model through a 'red pill, blue pill' choice: traces with the trigger (red pill) lead to misclassification as the target web page, while normal traces (blue pill) are classified correctly, achieving directed control over the defense outcome. We use the Fast Levenshtein-like distance as the optimization objective to compute trigger patterns that can be effectively associated with our target page. Experiments show that CWFD significantly reduces RF's accuracy from 99% to 6% with 74% data overhead. In comparison, FRONT reduces accuracy to only 97% at similar overhead, while Palette achieves 32% accuracy with 48% more overhead. We further validate the practicality of our method in a real Tor network environment.


Synergy-Guided Regional Supervision of Pseudo Labels for Semi-Supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

Semi-supervised learning has received considerable attention for its potential to leverage abundant unlabeled data to enhance model robustness. Pseudo labeling is a widely used strategy in semi supervised learning. However, existing methods often suffer from noise contamination, which can undermine model performance. To tackle this challenge, we introduce a novel Synergy-Guided Regional Supervision of Pseudo Labels (SGRS-Net) framework. Built upon the mean teacher network, we employ a Mix Augmentation module to enhance the unlabeled data. By evaluating the synergy before and after augmentation, we strategically partition the pseudo labels into distinct regions. Additionally, we introduce a Region Loss Evaluation module to assess the loss across each delineated area. Extensive experiments conducted on the LA dataset have demonstrated superior performance over state-of-the-art techniques, underscoring the efficiency and practicality of our framework.


Revisiting Network Perturbation for Semi-Supervised Semantic Segmentation

arXiv.org Artificial Intelligence

In semi-supervised semantic segmentation (SSS), weak-to-strong consistency regularization techniques are widely utilized in recent works, typically combined with input-level and feature-level perturbations. However, the integration between weak-to-strong consistency regularization and network perturbation has been relatively rare. We note several problems with existing network perturbations in SSS that may contribute to this phenomenon. By revisiting network perturbations, we introduce a new approach for network perturbation to expand the existing weak-to-strong consistency regularization for unlabeled data. Additionally, we present a volatile learning process for labeled data, which is uncommon in existing research. Building upon previous work that includes input-level and feature-level perturbations, we present MLPMatch (Multi-Level-Perturbation Match), an easy-to-implement and efficient framework for semi-supervised semantic segmentation. MLPMatch has been validated on the Pascal VOC and Cityscapes datasets, achieving state-of-the-art performance. Code is available from https://github.com/LlistenL/MLPMatch.


Exploring structure diversity in atomic resolution microscopy with graph neural networks

arXiv.org Artificial Intelligence

The emergence of deep learning (DL) has provided great opportunities for the high-throughput analysis of atomic-resolution micrographs. However, the DL models trained by image patches in fixed size generally lack efficiency and flexibility when processing micrographs containing diversified atomic configurations. Herein, inspired by the similarity between the atomic structures and graphs, we describe a few-shot learning framework based on an equivariant graph neural network (EGNN) to analyze a library of atomic structures (e.g., vacancies, phases, grain boundaries, doping, etc.), showing significantly promoted robustness and three orders of magnitude reduced computing parameters compared to the image-driven DL models, which is especially evident for those aggregated vacancy lines with flexible lattice distortion. Besides, the intuitiveness of graphs enables quantitative and straightforward extraction of the atomic-scale structural features in batches, thus statistically unveiling the self-assembly dynamics of vacancy lines under electron beam irradiation. A versatile model toolkit is established by integrating EGNN sub-models for single structure recognition to process images involving varied configurations in the form of a task chain, leading to the discovery of novel doping configurations with superior electrocatalytic properties for hydrogen evolution reactions. This work provides a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner.


A Knowledge-Informed Large Language Model Framework for U.S. Nuclear Power Plant Shutdown Initiating Event Classification for Probabilistic Risk Assessment

arXiv.org Artificial Intelligence

Identifying and classifying shutdown initiating events (SDIEs) is critical for developing low power shutdown probabilistic risk assessment for nuclear power plants. Existing computational approaches cannot achieve satisfactory performance due to the challenges of unavailable large, labeled datasets, imbalanced event types, and label noise. To address these challenges, we propose a hybrid pipeline that integrates a knowledge-informed machine learning mode to prescreen non-SDIEs and a large language model (LLM) to classify SDIEs into four types. In the prescreening stage, we proposed a set of 44 SDIE text patterns that consist of the most salient keywords and phrases from six SDIE types. Text vectorization based on the SDIE patterns generates feature vectors that are highly separable by using a simple binary classifier. The second stage builds Bidirectional Encoder Representations from Transformers (BERT)-based LLM, which learns generic English language representations from self-supervised pretraining on a large dataset and adapts to SDIE classification by fine-tuning it on an SDIE dataset. The proposed approaches are evaluated on a dataset with 10,928 events using precision, recall ratio, F1 score, and average accuracy. The results demonstrate that the prescreening stage can exclude more than 97% non-SDIEs, and the LLM achieves an average accuracy of 93.4% for SDIE classification.


ICAGC 2024: Inspirational and Convincing Audio Generation Challenge 2024

arXiv.org Artificial Intelligence

The Inspirational and Convincing Audio Generation Challenge 2024 (ICAGC 2024) is part of the ISCSLP 2024 Competitions and Challenges track. While current text-to-speech (TTS) technology can generate high-quality audio, its ability to convey complex emotions and controlled detail content remains limited. This constraint leads to a discrepancy between the generated audio and human subjective perception in practical applications like companion robots for children and marketing bots. The core issue lies in the inconsistency between high-quality audio generation and the ultimate human subjective experience. Therefore, this challenge aims to enhance the persuasiveness and acceptability of synthesized audio, focusing on human alignment convincing and inspirational audio generation.


MINT: a Multi-modal Image and Narrative Text Dubbing Dataset for Foley Audio Content Planning and Generation

arXiv.org Artificial Intelligence

Foley audio, critical for enhancing the immersive experience in multimedia content, faces significant challenges in the AI-generated content (AIGC) landscape. Despite advancements in AIGC technologies for text and image generation, the foley audio dubbing remains rudimentary due to difficulties in cross-modal scene matching and content correlation. Current text-to-audio technology, which relies on detailed and acoustically relevant textual descriptions, falls short in practical video dubbing applications. Existing datasets like AudioSet, AudioCaps, Clotho, Sound-of-Story, and WavCaps do not fully meet the requirements for real-world foley audio dubbing task. To address this, we introduce the Multi-modal Image and Narrative Text Dubbing Dataset (MINT), designed to enhance mainstream dubbing tasks such as literary story audiobooks dubbing, image/silent video dubbing. Besides, to address the limitations of existing TTA technology in understanding and planning complex prompts, a Foley Audio Content Planning, Generation, and Alignment (CPGA) framework is proposed, which includes a content planning module leveraging large language models for complex multi-modal prompts comprehension. Additionally, the training process is optimized using Proximal Policy Optimization based reinforcement learning, significantly improving the alignment and auditory realism of generated foley audio. Experimental results demonstrate that our approach significantly advances the field of foley audio dubbing, providing robust solutions for the challenges of multi-modal dubbing. Even when utilizing the relatively lightweight GPT-2 model, our framework outperforms open-source multimodal large models such as LLaVA, DeepSeek-VL, and Moondream2. The dataset is available at https://github.com/borisfrb/MINT .


DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment

arXiv.org Artificial Intelligence

Graph neural networks are recognized for their strong performance across various applications, with the backpropagation algorithm playing a central role in the development of most GNN models. However, despite its effectiveness, BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks. While several non-BP training algorithms, such as the direct feedback alignment, have been successfully applied to fully-connected and convolutional network components for handling Euclidean data, directly adapting these non-BP frameworks to manage non-Euclidean graph data in GNN models presents significant challenges. These challenges primarily arise from the violation of the i.i.d. assumption in graph data and the difficulty in accessing prediction errors for all samples (nodes) within the graph. To overcome these obstacles, in this paper we propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning. The proposed method breaks the limitations of BP by using a dedicated forward training mechanism. Specifically, DFA-GNN extends the principles of DFA to adapt to graph data and unique architecture of GNNs, which incorporates the information of graph topology into the feedback links to accommodate the non-Euclidean characteristics of graph data. Additionally, for semi-supervised graph learning tasks, we developed a pseudo error generator that spreads residual errors from training data to create a pseudo error for each unlabeled node. These pseudo errors are then utilized to train GNNs using DFA. Extensive experiments on 10 public benchmarks reveal that our learning framework outperforms not only previous non-BP methods but also the standard BP methods, and it exhibits excellent robustness against various types of noise and attacks.