Wang, Song
Deep Learning-Enhanced Preconditioning for Efficient Conjugate Gradient Solvers in Large-Scale PDE Systems
Li, Rui, Wang, Song, Wang, Chen
Preconditioning techniques are crucial for enhancing the efficiency of solving large-scale linear equation systems that arise from partial differential equation (PDE) discretization. These techniques, such as Incomplete Cholesky factorization (IC) and data-driven neural network methods, accelerate the convergence of iterative solvers like Conjugate Gradient (CG) by approximating the original matrices. This paper introduces a novel approach that integrates Graph Neural Network (GNN) with traditional IC, addressing the shortcomings of direct generation methods based on GNN and achieving significant improvements in computational efficiency and scalability. Experimental results demonstrate an average reduction in iteration counts by 24.8% compared to IC and a two-order-of-magnitude increase in training scale compared to previous methods. A three-dimensional static structural analysis utilizing finite element methods was validated on training sparse matrices of up to 5 million dimensions and inference scales of up to 10 million. Furthermore, the approach demon-strates robust generalization capabilities across scales, facilitating the effective acceleration of CG solvers for large-scale linear equations using small-scale data on modest hardware. The method's robustness and scalability make it a practical solution for computational science.
Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective
Dong, Yushun, Soga, Patrick, He, Yinhan, Wang, Song, Li, Jundong
Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks. While their performance is often attributed to the powerful neighborhood aggregation mechanism, recent studies suggest that other components such as non-linear layers may also significantly affecting how GNNs process the input graph data in the spectral domain. Such evidence challenges the prevalent opinion that neighborhood aggregation mechanisms dominate the behavioral characteristics of GNNs in the spectral domain. To demystify such a conflict, this paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data. Specifically, we first conduct an exploratory study demonstrating that GNNs can flexibly yield outputs with diverse frequency components even when certain frequencies are absent or filtered out from the input graph data. We then formulate a novel research problem of measuring and benchmarking the performance of GNNs from a spectral perspective. To take an initial step towards a comprehensive benchmark, we design an evaluation protocol supported by comprehensive theoretical analysis. Finally, we introduce a comprehensive benchmark on real-world datasets, revealing insights that challenge prevalent opinions from a spectral perspective. We believe that our findings will open new avenues for future advancements in this area. Our implementations can be found at: https://github.com/yushundong/Spectral-benchmark.
Integrative Decoding: Improve Factuality via Implicit Self-consistency
Cheng, Yi, Liang, Xiao, Gong, Yeyun, Xiao, Wen, Wang, Song, Zhang, Yuji, Hou, Wenjun, Xu, Kaishuai, Liu, Wenge, Li, Wenjie, Jiao, Jian, Chen, Qi, Cheng, Peng, Xiong, Wayne
Self-consistency-based approaches, which involve repeatedly sampling multiple outputs and selecting the most consistent one as the final response, prove to be remarkably effective in improving the factual accuracy of large language models. Nonetheless, existing methods usually have strict constraints on the task format, largely limiting their applicability. In this paper, we present Integrative Decoding (ID), to unlock the potential of self-consistency in open-ended generation tasks. ID operates by constructing a set of inputs, each prepended with a previously sampled response, and then processes them concurrently, with the next token being selected by aggregating of all their corresponding predictions at each decoding step. In essence, this simple approach implicitly incorporates self-consistency in the decoding objective. Extensive evaluation shows that ID consistently enhances factuality over a wide range of language models, with substantial improvements on the TruthfulQA (+11.2%), Biographies (+15.4%) and LongFact (+8.5%) benchmarks. The performance gains amplify progressively as the number of sampled responses increases, indicating the potential of ID to scale up with repeated sampling.
Federated Graph Learning with Graphless Clients
Fu, Xingbo, Wang, Song, Dong, Yushun, Zhang, Binchi, Chen, Chen, Li, Jundong
Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs), for multiple clients, each with its own graph data. Existing methods usually assume that each client has both node features and graph structure of its graph data. In real-world scenarios, however, there exist federated systems where only a part of the clients have such data while other clients (i.e. graphless clients) may only have node features. This naturally leads to a novel problem in FGL: how to jointly train a model over distributed graph data with graphless clients? In this paper, we propose a novel framework FedGLS to tackle the problem in FGL with graphless clients. In FedGLS, we devise a local graph learner on each graphless client which learns the local graph structure with the structure knowledge transferred from other clients. To enable structure knowledge transfer, we design a GNN model and a feature encoder on each client. During local training, the feature encoder retains the local graph structure knowledge together with the GNN model via knowledge distillation, and the structure knowledge is transferred among clients in global update. Our extensive experiments demonstrate the superiority of the proposed FedGLS over five baselines.
CodePurify: Defend Backdoor Attacks on Neural Code Models via Entropy-based Purification
Mu, Fangwen, Wang, Junjie, Yu, Zhuohao, Shi, Lin, Wang, Song, Li, Mingyang, Wang, Qing
Neural code models have found widespread success in tasks pertaining to code intelligence, yet they are vulnerable to backdoor attacks, where an adversary can manipulate the victim model's behavior by inserting triggers into the source code. Recent studies indicate that advanced backdoor attacks can achieve nearly 100% attack success rates on many software engineering tasks. However, effective defense techniques against such attacks remain insufficiently explored. In this study, we propose CodePurify, a novel defense against backdoor attacks on code models through entropy-based purification. Entropy-based purification involves the process of precisely detecting and eliminating the possible triggers in the source code while preserving its semantic information. Within this process, CodePurify first develops a confidence-driven entropy-based measurement to determine whether a code snippet is poisoned and, if so, locates the triggers. Subsequently, it purifies the code by substituting the triggers with benign tokens using a masked language model. We extensively evaluate CodePurify against four advanced backdoor attacks across three representative tasks and two popular code models. The results show that CodePurify significantly outperforms four commonly used defense baselines, improving average defense performance by at least 40%, 40%, and 12% across the three tasks, respectively. These findings highlight the potential of CodePurify to serve as a robust defense against backdoor attacks on neural code models.
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Zhang, Kexin, Liu, Shuhan, Wang, Song, Shi, Weili, Chen, Chen, Li, Pan, Li, Sheng, Li, Jundong, Ding, Kaize
Distribution shifts on graphs -- the discrepancies in data distribution between training and employing a graph machine learning model -- are ubiquitous and often unavoidable in real-world scenarios. These shifts may severely deteriorate model performance, posing significant challenges for reliable graph machine learning. Consequently, there has been a surge in research on graph machine learning under distribution shifts, aiming to train models to achieve satisfactory performance on out-of-distribution (OOD) test data. In our survey, we provide an up-to-date and forward-looking review of deep graph learning under distribution shifts. Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation. We begin by formally formulating the problems and discussing various types of distribution shifts that can affect graph learning, such as covariate shifts and concept shifts. To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy and investigate the adopted techniques behind. We also summarize commonly used datasets in this research area to facilitate further investigation. Finally, we point out promising research directions and the corresponding challenges to encourage further study in this vital domain. Additionally, we provide a continuously updated reading list at https://github.com/kaize0409/Awesome-Graph-OOD.
ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning
Wang, Song, Wang, Zhongdao, Yu, Jiawei, Li, Wentong, Feng, Bailan, Chen, Junbo, Zhu, Jianke
Vision-centric semantic occupancy prediction plays a crucial role in autonomous driving, which requires accurate and reliable predictions from low-cost sensors. Although having notably narrowed the accuracy gap with LiDAR, there is still few research effort to explore the reliability in predicting semantic occupancy from camera. In this paper, we conduct a comprehensive evaluation of existing semantic occupancy prediction models from a reliability perspective for the first time. Despite the gradual alignment of camera-based models with LiDAR in term of accuracy, a significant reliability gap persists. To addresses this concern, we propose ReliOcc, a method designed to enhance the reliability of camera-based occupancy networks. ReliOcc provides a plug-and-play scheme for existing models, which integrates hybrid uncertainty from individual voxels with sampling-based noise and relative voxels through mix-up learning. Besides, an uncertainty-aware calibration strategy is devised to further enhance model reliability in offline mode. Extensive experiments under various settings demonstrate that ReliOcc significantly enhances model reliability while maintaining the accuracy of both geometric and semantic predictions. Importantly, our proposed approach exhibits robustness to sensor failures and out of domain noises during inference.
Can we only use guideline instead of shot in prompt?
Chen, Jiaxiang, Wang, Song, Li, Zhucong, Xiong, Wayne, Qu, Lizhen, Xu, Zenglin, Qi, Yuan
Currently, prompting techniques can be mainly divided into two categories:1)shot method implicitly inspires the model to answer the question by mimicing the steps in the given example, e.g., the few-shot CoT. 2) Guideline method explicitly instructs the model to reason by following guidelines, which contains succinct and concise task-specific knowledge. Shot method is prone to difficulties in terms of selection of shots type, the number of shots, and the design of the reasoning steps, so a question arises: can we only use guideline instead of shot in the prompt? To this end, we propose the FGT framework to automatically learn task-specific guidelines from dataset consisting of Feedback, Guideline, and Tree-gather agents. First, the feedback agent is designed to evaluate the outcomes, both right and wrong, of each Q&A to gather insights guiding more effective optimization strategies. Next, the guideline agent is tasked with deriving guidelines from each piece of feedback and storing them in local memory. Lastly, the tree-gather agent aggregates all guidelines hierarchically through a tree structure, ultimately obtaining all unduplicated guidelines from a global perspective. In addition, we induce the model to generate intermediate processes to ensure the reasoning consistent with the guidelines. Experimental results demonstrate that our approach achieves superior performance across multiple tasks, thereby highlighting the effectiveness of using the guidelines in prompt.
A Benchmark for Fairness-Aware Graph Learning
Dong, Yushun, Wang, Song, Lei, Zhenyu, Zheng, Zaiyi, Ma, Jing, Chen, Chen, Li, Jundong
Fairness-aware graph learning has gained increasing attention in recent years. Nevertheless, there lacks a comprehensive benchmark to evaluate and compare different fairness-aware graph learning methods, which blocks practitioners from choosing appropriate ones for broader real-world applications. In this paper, we present an extensive benchmark on ten representative fairness-aware graph learning methods. Specifically, we design a systematic evaluation protocol and conduct experiments on seven real-world datasets to evaluate these methods from multiple perspectives, including group fairness, individual fairness, the balance between different fairness criteria, and computational efficiency. Our in-depth analysis reveals key insights into the strengths and limitations of existing methods. Additionally, we provide practical guidance for applying fairness-aware graph learning methods in applications. To the best of our knowledge, this work serves as an initial step towards comprehensively understanding representative fairness-aware graph learning methods to facilitate future advancements in this area.
CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
Wang, Song, Wang, Peng, Zhou, Tong, Dong, Yushun, Tan, Zhen, Li, Jundong
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Benchmark with 11,004 samples that cover different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.