Wang, Shusen
Adjusting Leverage Scores by Row Weighting: A Practical Approach to Coherent Matrix Completion
Wang, Shusen, Zhang, Tong, Zhang, Zhihua
Low-rank matrix completion is an important problem with extensive real-world applications. When observations are uniformly sampled from the underlying matrix entries, existing methods all require the matrix to be incoherent. This paper provides the first working method for coherent matrix completion under the standard uniform sampling model. Our approach is based on the weighted nuclear norm minimization idea proposed in several recent work, and our key contribution is a practical method to compute the weighting matrices so that the leverage scores become more uniform after weighting. Under suitable conditions, we are able to derive theoretical results, showing the effectiveness of our approach. Experiments on synthetic data show that our approach recovers highly coherent matrices with high precision, whereas the standard unweighted method fails even on noise-free data.
Using The Matrix Ridge Approximation to Speedup Determinantal Point Processes Sampling Algorithms
Wang, Shusen (Zhejiang University) | Zhang, Chao (Zhejiang University) | Qian, Hui (Zhejiang University) | Zhang, Zhihua (Shanghai Jiao Tong University)
Determinantal point process (DPP) is an important probabilistic model that has extensive applications in artificial intelligence. The exact sampling algorithm of DPP requires the full eigenvalue decomposition of the kernel matrix which has high time and space complexities. This prohibits the applications of DPP from large-scale datasets. Previous work has applied the Nystrom method to speedup the sampling algorithm of DPP, and error bounds have been established for the approximation. In this paper we employ the matrix ridge approximation (MRA) to speedup the sampling algorithm of DPP, showing that our approach MRA-DPP has stronger error bound than the Nystrom-DPP. In certain circumstances our MRA-DPP is provably exact, whereas the Nystrom-DPP is far from the ground truth. Finally, experiments on several real-world datasets show that our MRA-DPP is more accurate than the other approximation approaches.
A Scalable CUR Matrix Decomposition Algorithm: Lower Time Complexity and Tighter Bound
Wang, Shusen, Zhang, Zhihua
The CUR matrix decomposition is an important extension of Nystrรถm approximation to a general matrix. It approximates any data matrix in terms of a small number of its columns and rows. In this paper we propose a novel randomized CUR algorithm with an expected relative-error bound. The proposed algorithm has the advantages over the existing relative-error CUR algorithms that it possesses tighter theoretical bound and lower time complexity, and that it can avoid maintaining the whole data matrix in main memory. Finally, experiments on several real-world datasets demonstrate significant improvement over the existing relative-error algorithms.
A Scalable CUR Matrix Decomposition Algorithm: Lower Time Complexity and Tighter Bound
Wang, Shusen, Zhang, Zhihua, Li, Jian
The CUR matrix decomposition is an important extension of Nystr\"{o}m approximation to a general matrix. It approximates any data matrix in terms of a small number of its columns and rows. In this paper we propose a novel randomized CUR algorithm with an expected relative-error bound. The proposed algorithm has the advantages over the existing relative-error CUR algorithms that it possesses tighter theoretical bound and lower time complexity, and that it can avoid maintaining the whole data matrix in main memory. Finally, experiments on several real-world datasets demonstrate significant improvement over the existing relative-error algorithms.
Colorization by Matrix Completion
Wang, Shusen (Zhejiang University) | Zhang, Zhihua (Zhejiang University)
Given a monochrome image and some manually labeled pixels, the colorization problem is a computer-assisted process of adding color to the monochrome image. This paper proposes a novel approach to the colorization problem by formulating it as a matrix completion problem. In particular, taking a monochrome image and parts of the color pixels (labels) as inputs, we develop a robust colorization model and resort to an augmented Lagrange multiplier algorithm for solving the model. Our approach is based on the fact that a matrix can be represented as a low-rank matrix plus a sparse matrix. Our approach is effective because it is able to handle the potential noises in the monochrome image and outliers in the labels. To improve the performance of our method, we further incorporate a so-called local-color-consistency idea into our method. Empirical results on real data sets are encouraging.
EP-GIG Priors and Applications in Bayesian Sparse Learning
Zhang, Zhihua, Wang, Shusen, Liu, Dehua, Jordan, Michael I.
In this paper we propose a novel framework for the construction of sparsity-inducing priors. In particular, we define such priors as a mixture of exponential power distributions with a generalized inverse Gaussian density (EP-GIG). EP-GIG is a variant of generalized hyperbolic distributions, and the special cases include Gaussian scale mixtures and Laplace scale mixtures. Furthermore, Laplace scale mixtures can subserve a Bayesian framework for sparse learning with nonconvex penalization. The densities of EP-GIG can be explicitly expressed. Moreover, the corresponding posterior distribution also follows a generalized inverse Gaussian distribution. These properties lead us to EM algorithms for Bayesian sparse learning. We show that these algorithms bear an interesting resemblance to iteratively re-weighted $\ell_2$ or $\ell_1$ methods. In addition, we present two extensions for grouped variable selection and logistic regression.
Efficient Subspace Segmentation via Quadratic Programming
Wang, Shusen (Zhejiang University) | Yuan, Xiaotong (National University of Singapore) | Yao, Tiansheng (Zhejiang University) | Yan, Shuicheng (National University of Singapore) | Shen, Jialie (Singapore Management University)
We explore in this paper efficient algorithmic solutions to robustsubspace segmentation. We propose the SSQP, namely SubspaceSegmentation via Quadratic Programming, to partition data drawnfrom multiple subspaces into multiple clusters. The basic idea ofSSQP is to express each datum as the linear combination of otherdata regularized by an overall term targeting zero reconstructioncoefficients over vectors from different subspaces. The derivedcoefficient matrix by solving a quadratic programming problem istaken as an affinity matrix, upon which spectral clustering isapplied to obtain the ultimate segmentation result. Similar tosparse subspace clustering (SCC) and low-rank representation (LRR),SSQP is robust to data noises as validated by experiments on toydata. Experiments on Hopkins 155 database show that SSQP can achievecompetitive accuracy as SCC and LRR in segmenting affine subspaces,while experimental results on the Extended Yale Face Database Bdemonstrate SSQP's superiority over SCC and LRR. Beyond segmentationaccuracy, all experiments show that SSQP is much faster than bothSSC and LRR in the practice of subspace segmentation.