Not enough data to create a plot.
Try a different view from the menu above.
Wang, Shijie
Neural-g: A Deep Learning Framework for Mixing Density Estimation
Wang, Shijie, Chakraborty, Saptarshi, Qin, Qian, Bai, Ray
Mixing (or prior) density estimation is an important problem in machine learning and statistics, especially in empirical Bayes $g$-modeling where accurately estimating the prior is necessary for making good posterior inferences. In this paper, we propose neural-$g$, a new neural network-based estimator for $g$-modeling. Neural-$g$ uses a softmax output layer to ensure that the estimated prior is a valid probability density. Under default hyperparameters, we show that neural-$g$ is very flexible and capable of capturing many unknown densities, including those with flat regions, heavy tails, and/or discontinuities. In contrast, existing methods struggle to capture all of these prior shapes. We provide justification for neural-$g$ by establishing a new universal approximation theorem regarding the capability of neural networks to learn arbitrary probability mass functions. To accelerate convergence of our numerical implementation, we utilize a weighted average gradient descent approach to update the network parameters. Finally, we extend neural-$g$ to multivariate prior density estimation. We illustrate the efficacy of our approach through simulations and analyses of real datasets. A software package to implement neural-$g$ is publicly available at https://github.com/shijiew97/neuralG.
Graph Machine Learning in the Era of Large Language Models (LLMs)
Fan, Wenqi, Wang, Shijie, Huang, Jiani, Chen, Zhikai, Song, Yu, Tang, Wenzhuo, Mao, Haitao, Liu, Hui, Liu, Xiaorui, Yin, Dawei, Li, Qing
Graphs play an important role in representing complex relationships in various domains like social networks, knowledge graphs, and molecular discovery. With the advent of deep learning, Graph Neural Networks (GNNs) have emerged as a cornerstone in Graph Machine Learning (Graph ML), facilitating the representation and processing of graph structures. Recently, LLMs have demonstrated unprecedented capabilities in language tasks and are widely adopted in a variety of applications such as computer vision and recommender systems. This remarkable success has also attracted interest in applying LLMs to the graph domain. Increasing efforts have been made to explore the potential of LLMs in advancing Graph ML's generalization, transferability, and few-shot learning ability. Meanwhile, graphs, especially knowledge graphs, are rich in reliable factual knowledge, which can be utilized to enhance the reasoning capabilities of LLMs and potentially alleviate their limitations such as hallucinations and the lack of explainability. Given the rapid progress of this research direction, a systematic review summarizing the latest advancements for Graph ML in the era of LLMs is necessary to provide an in-depth understanding to researchers and practitioners. Therefore, in this survey, we first review the recent developments in Graph ML. We then explore how LLMs can be utilized to enhance the quality of graph features, alleviate the reliance on labeled data, and address challenges such as graph heterogeneity and out-of-distribution (OOD) generalization. Afterward, we delve into how graphs can enhance LLMs, highlighting their abilities to enhance LLM pre-training and inference. Furthermore, we investigate various applications and discuss the potential future directions in this promising field.
Graph Unlearning with Efficient Partial Retraining
Zhang, Jiahao, Wang, Lin, Wang, Shijie, Fan, Wenqi
Graph Neural Networks (GNNs) have achieved remarkable success in various real-world applications. However, GNNs may be trained on undesirable graph data, which can degrade their performance and reliability. To enable trained GNNs to efficiently unlearn unwanted data, a desirable solution is retraining-based graph unlearning, which partitions the training graph into subgraphs and trains sub-models on them, allowing fast unlearning through partial retraining. However, the graph partition process causes information loss in the training graph, resulting in the low model utility of sub-GNN models. In this paper, we propose GraphRevoker, a novel graph unlearning framework that better maintains the model utility of unlearnable GNNs. Specifically, we preserve the graph property with graph property-aware sharding and effectively aggregate the sub-GNN models for prediction with graph contrastive sub-model aggregation. We conduct extensive experiments to demonstrate the superiority of our proposed approach.
Vamos: Versatile Action Models for Video Understanding
Wang, Shijie, Zhao, Qi, Do, Minh Quan, Agarwal, Nakul, Lee, Kwonjoon, Sun, Chen
What makes good video representations for video understanding, such as anticipating future activities, or answering video-conditioned questions? While earlier approaches focus on end-to-end learning directly from video pixels, we propose to revisit text-based representations, such as discrete action labels, or free-form video captions, which are interpretable and can be directly consumed by large language models (LLMs). Intuitively, different video understanding tasks may require representations that are complementary and at different granularities. To this end, we propose versatile action models (Vamos), a learning framework powered by a large language model as the "reasoner", and can flexibly leverage visual embeddings, action labels, and free-form descriptions extracted from videos as its input. We evaluate Vamos on four complementary video understanding benchmarks, Ego4D, Next-QA, IntentQA, and EgoSchema, on its capability to model temporal dynamics, encode visual history, and perform reasoning. Surprisingly, we observe that text-based representations consistently achieve competitive performance on all benchmarks, and that visual embeddings provide marginal or no performance improvement, demonstrating the effectiveness of text-based video representation in the LLM era. We perform extensive ablation study and qualitative analysis to support our observations, and achieve state-of-the-art performance on three benchmarks.
Untargeted Black-box Attacks for Social Recommendations
Fan, Wenqi, Wang, Shijie, Wei, Xiao-yong, Mei, Xiaowei, Li, Qing
The rise of online social networks has facilitated the evolution of social recommender systems, which incorporate social relations to enhance users' decision-making process. With the great success of Graph Neural Networks in learning node representations, GNN-based social recommendations have been widely studied to model user-item interactions and user-user social relations simultaneously. Despite their great successes, recent studies have shown that these advanced recommender systems are highly vulnerable to adversarial attacks, in which attackers can inject well-designed fake user profiles to disrupt recommendation performances. While most existing studies mainly focus on targeted attacks to promote target items on vanilla recommender systems, untargeted attacks to degrade the overall prediction performance are less explored on social recommendations under a black-box scenario. To perform untargeted attacks on social recommender systems, attackers can construct malicious social relationships for fake users to enhance the attack performance. However, the coordination of social relations and item profiles is challenging for attacking black-box social recommendations. To address this limitation, we first conduct several preliminary studies to demonstrate the effectiveness of cross-community connections and cold-start items in degrading recommendations performance. Specifically, we propose a novel framework Multiattack based on multi-agent reinforcement learning to coordinate the generation of cold-start item profiles and cross-community social relations for conducting untargeted attacks on black-box social recommendations. Comprehensive experiments on various real-world datasets demonstrate the effectiveness of our proposed attacking framework under the black-box setting.
Goal-Conditioned Predictive Coding for Offline Reinforcement Learning
Zeng, Zilai, Zhang, Ce, Wang, Shijie, Sun, Chen
Recent work has demonstrated the effectiveness of formulating decision making as supervised learning on offline-collected trajectories. Powerful sequence models, such as GPT or BERT, are often employed to encode the trajectories. However, the benefits of performing sequence modeling on trajectory data remain unclear. In this work, we investigate whether sequence modeling has the ability to condense trajectories into useful representations that enhance policy learning. We adopt a two-stage framework that first leverages sequence models to encode trajectory-level representations, and then learns a goal-conditioned policy employing the encoded representations as its input. This formulation allows us to consider many existing supervised offline RL methods as specific instances of our framework. Within this framework, we introduce Goal-Conditioned Predictive Coding (GCPC), a sequence modeling objective that yields powerful trajectory representations and leads to performant policies. Through extensive empirical evaluations on AntMaze, FrankaKitchen and Locomotion environments, we observe that sequence modeling can have a significant impact on challenging decision making tasks. Furthermore, we demonstrate that GCPC learns a goal-conditioned latent representation encoding the future trajectory, which enables competitive performance on all three benchmarks.
Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond
Bai, Jinze, Bai, Shuai, Yang, Shusheng, Wang, Shijie, Tan, Sinan, Wang, Peng, Lin, Junyang, Zhou, Chang, Zhou, Jingren
In this work, we introduce the Qwen-VL series, a set of large-scale vision-language models (LVLMs) designed to perceive and understand both texts and images. Starting from the Qwen-LM as a foundation, we endow it with visual capacity by the meticulously designed (i) visual receptor, (ii) input-output interface, (iii) 3-stage training pipeline, and (iv) multilingual multimodal cleaned corpus. Beyond the conventional image description and question-answering, we implement the grounding and text-reading ability of Qwen-VLs by aligning image-caption-box tuples. The resulting models, including Qwen-VL and Qwen-VL-Chat, set new records for generalist models under similar model scales on a broad range of visual-centric benchmarks (e.g., image captioning, question answering, visual grounding) and different settings (e.g., zero-shot, few-shot). Moreover, on real-world dialog benchmarks, our instruction-tuned Qwen-VL-Chat also demonstrates superiority compared to existing vision-language chatbots. Code, demo and models are available at https://github.com/QwenLM/Qwen-VL.
Qwen Technical Report
Bai, Jinze, Bai, Shuai, Chu, Yunfei, Cui, Zeyu, Dang, Kai, Deng, Xiaodong, Fan, Yang, Ge, Wenbin, Han, Yu, Huang, Fei, Hui, Binyuan, Ji, Luo, Li, Mei, Lin, Junyang, Lin, Runji, Liu, Dayiheng, Liu, Gao, Lu, Chengqiang, Lu, Keming, Ma, Jianxin, Men, Rui, Ren, Xingzhang, Ren, Xuancheng, Tan, Chuanqi, Tan, Sinan, Tu, Jianhong, Wang, Peng, Wang, Shijie, Wang, Wei, Wu, Shengguang, Xu, Benfeng, Xu, Jin, Yang, An, Yang, Hao, Yang, Jian, Yang, Shusheng, Yao, Yang, Yu, Bowen, Yuan, Hongyi, Yuan, Zheng, Zhang, Jianwei, Zhang, Xingxuan, Zhang, Yichang, Zhang, Zhenru, Zhou, Chang, Zhou, Jingren, Zhou, Xiaohuan, Zhu, Tianhang
Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.
A Novel Multi-Agent Deep RL Approach for Traffic Signal Control
Wang, Shijie, Wang, Shangbo
As travel demand increases and urban traffic condition becomes more complicated, applying multi-agent deep reinforcement learning (MARL) to traffic signal control becomes one of the hot topics. The rise of Reinforcement Learning (RL) has opened up opportunities for solving Adaptive Traffic Signal Control (ATSC) in complex urban traffic networks, and deep neural networks have further enhanced their ability to handle complex data. Traditional research in traffic signal control is based on the centralized Reinforcement Learning technique. However, in a large-scale road network, centralized RL is infeasible because of an exponential growth of joint state-action space. In this paper, we propose a Friend-Deep Q-network (Friend-DQN) approach for multiple traffic signal control in urban networks, which is based on an agent-cooperation scheme. In particular, the cooperation between multiple agents can reduce the state-action space and thus speed up the convergence. We use SUMO (Simulation of Urban Transport) platform to evaluate the performance of Friend-DQN model, and show its feasibility and superiority over other existing methods.
ONE-PEACE: Exploring One General Representation Model Toward Unlimited Modalities
Wang, Peng, Wang, Shijie, Lin, Junyang, Bai, Shuai, Zhou, Xiaohuan, Zhou, Jingren, Wang, Xinggang, Zhou, Chang
In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at https://github.com/OFA-Sys/ONE-PEACE.