Wang, Shi
Moto: Enhancing Embedding with Multiple Joint Factors for Chinese Text Classification
Tang, Xunzhu, Zhu, Rujie, Sun, Tiezhu, Wang, Shi
Recently, language representation techniques have achieved great performances in text classification. However, most existing representation models are specifically designed for English materials, which may fail in Chinese because of the huge difference between these two languages. Actually, few existing methods for Chinese text classification process texts at a single level. However, as a special kind of hieroglyphics, radicals of Chinese characters are good semantic carriers. In addition, Pinyin codes carry the semantic of tones, and Wubi reflects the stroke structure information, \textit{etc}. Unfortunately, previous researches neglected to find an effective way to distill the useful parts of these four factors and to fuse them. In our works, we propose a novel model called Moto: Enhancing Embedding with \textbf{M}ultiple J\textbf{o}int Fac\textbf{to}rs. Specifically, we design an attention mechanism to distill the useful parts by fusing the four-level information above more effectively. We conduct extensive experiments on four popular tasks. The empirical results show that our Moto achieves SOTA 0.8316 ($F_1$-score, 2.11\% improvement) on Chinese news titles, 96.38 (1.24\% improvement) on Fudan Corpus and 0.9633 (3.26\% improvement) on THUCNews.
HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding
Wang, Shi, Tang, Daniel, Zhang, Luchen, Li, Huilin, Han, Ding
International Classification of Diseases (ICD) is a set of classification codes for medical records. Automated ICD coding, which assigns unique International Classification of Diseases codes with each medical record, is widely used recently for its efficiency and error-prone avoidance. However, there are challenges that remain such as heterogeneity, label unbalance, and complex relationships between ICD codes. In this work, we proposed a novel Bidirectional Hierarchy Framework(HieNet) to address the challenges. Specifically, a personalized PageRank routine is developed to capture the co-relation of codes, a bidirectional hierarchy passage encoder to capture the codes' hierarchical representations, and a progressive predicting method is then proposed to narrow down the semantic searching space of prediction. We validate our method on two widely used datasets. Experimental results on two authoritative public datasets demonstrate that our proposed method boosts the state-of-the-art performance by a large margin.
HERB: Measuring Hierarchical Regional Bias in Pre-trained Language Models
Li, Yizhi, Zhang, Ge, Yang, Bohao, Lin, Chenghua, Wang, Shi, Ragni, Anton, Fu, Jie
Fairness has become a trending topic in natural language processing (NLP), which addresses biases targeting certain social groups such as genders and religions. However, regional bias in language models (LMs), a long-standing global discrimination problem, still remains unexplored. This paper bridges the gap by analysing the regional bias learned by the pre-trained language models that are broadly used in NLP tasks. In addition to verifying the existence of regional bias in LMs, we find that the biases on regional groups can be strongly influenced by the geographical clustering of the groups. We accordingly propose a HiErarchical Regional Bias evaluation method (HERB) utilising the information from the sub-region clusters to quantify the bias in pre-trained LMs. Experiments show that our hierarchical metric can effectively evaluate the regional bias with respect to comprehensive topics and measure the potential regional bias that can be propagated to downstream tasks. Our codes are available at https://github.com/Bernard-Yang/HERB.