Not enough data to create a plot.
Try a different view from the menu above.
Wang, Sean
COPU: Conformal Prediction for Uncertainty Quantification in Natural Language Generation
Wang, Sean, Jiang, Yicheng, Tang, Yuxin, Cheng, Lu, Chen, Hanjie
Uncertainty Quantification (UQ) for Natural Language Generation (NLG) is crucial for assessing the performance of Large Language Models (LLMs), as it reveals confidence in predictions, identifies failure modes, and gauges output reliability. Conformal Prediction (CP), a model-agnostic method that generates prediction sets with a specified error rate, has been adopted for UQ in classification tasks, where the size of the prediction set indicates the model's uncertainty. However, when adapting CP to NLG, the sampling-based method for generating candidate outputs cannot guarantee the inclusion of the ground truth, limiting its applicability across a wide range of error rates. To address this, we propose \ourmethod, a method that explicitly adds the ground truth to the candidate outputs and uses logit scores to measure nonconformity. Our experiments with six LLMs on four NLG tasks show that \ourmethod outperforms baseline methods in calibrating error rates and empirical cover rates, offering accurate UQ across a wide range of user-specified error rates.
KubeEdge.AI: AI Platform for Edge Devices
Wang, Sean, Hu, Yuxiao, Wu, Jason
The demand for smartness in embedded systems has been mounting up drastically in the past few years. Embedded system today must address the fundamental challenges introduced by cloud computing and artificial intelligence. KubeEdge [1] is an edge computing framework build on top of Kubernetes [2]. It provides compute resource management, deployment, runtime and operation capabilities on geo-located edge computing resources, from the cloud, which is a natural fit for embedded systems. Here we propose KubeEdge.AI, an edge AI framework on top of KubeEdge. It provides a set of key modules and interfaces: a data handling and processing engine, a concise AI runtime, a decision engine, and a distributed data query interface. KubeEdge.AI will help reduce the burdens for developing specific edge/embedded AI systems and promote edge-cloud coordination and synergy.