Not enough data to create a plot.
Try a different view from the menu above.
Wang, Rong
MFH: A Multi-faceted Heuristic Algorithm Selection Approach for Software Verification
Su, Jie, Deng, Liansai, Wen, Cheng, Wang, Rong, Ma, Zhi, Zhang, Nan, Tian, Cong, Duan, Zhenhua, Qin, Shengchao
Currently, many verification algorithms are available to improve the reliability of software systems. Selecting the appropriate verification algorithm typically demands domain expertise and non-trivial manpower. An automated algorithm selector is thus desired. However, existing selectors, either depend on machine-learned strategies or manually designed heuristics, encounter issues such as reliance on high-quality samples with algorithm labels and limited scalability. In this paper, an automated algorithm selection approach, namely MFH, is proposed for software verification. Our approach leverages the heuristics that verifiers producing correct results typically implement certain appropriate algorithms, and the supported algorithms by these verifiers indirectly reflect which ones are potentially applicable. Specifically, MFH embeds the code property graph (CPG) of a semantic-preserving transformed program to enhance the robustness of the prediction model. Furthermore, our approach decomposes the selection task into the sub-tasks of predicting potentially applicable algorithms and matching the most appropriate verifiers. Additionally, MFH also introduces a feedback loop on incorrect predictions to improve model prediction accuracy. We evaluate MFH on 20 verifiers and over 15,000 verification tasks. Experimental results demonstrate the effectiveness of MFH, achieving a prediction accuracy of 91.47% even without ground truth algorithm labels provided during the training phase. Moreover, the prediction accuracy decreases only by 0.84% when introducing 10 new verifiers, indicating the strong scalability of the proposed approach.
A Greedy Strategy for Graph Cut
Nie, Feiping, Pei, Shenfei, Zheng, Zengwei, Wang, Rong, Li, Xuelong
We propose a Greedy strategy to solve the problem of Graph Cut, called GGC. It starts from the state where each data sample is regarded as a cluster and dynamically merges the two clusters which reduces the value of the global objective function the most until the required number of clusters is obtained, and the monotonicity of the sequence of objective function values is proved. To reduce the computational complexity of GGC, only mergers between clusters and their neighbors are considered. Therefore, GGC has a nearly linear computational complexity with respect to the number of samples. Also, unlike other algorithms, due to the greedy strategy, the solution of the proposed algorithm is unique. In other words, its performance is not affected by randomness. We apply the proposed method to solve the problem of normalized cut which is a widely concerned graph cut problem. Extensive experiments show that better solutions can often be achieved compared to the traditional two-stage optimization algorithm (eigendecomposition + k-means), on the normalized cut problem. In addition, the performance of GGC also has advantages compared to several state-of-the-art clustering algorithms.
Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs
Wang, Rong, Sun, Kun, Kuhn, Jonas
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.
Clustering Based on Density Propagation and Subcluster Merging
Nie, Feiping, Song, Yitao, Xue, Jingjing, Wang, Rong, Li, Xuelong
We propose the DPSM method, a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space. Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process, thereby making it suitable for a graph space. In DPSM, nodes are partitioned into small clusters based on propagated density. The partitioning technique has been proved to be sound and complete. We then extend the concept of spectral clustering from individual nodes to these small clusters, while introducing the CluCut measure to guide cluster merging. This measure is modified in various ways to account for cluster properties, thus provides guidance on when to terminate the merging process. Various experiments have validated the effectiveness of DOSM and the accuracy of these conclusions.
Fast Semi-supervised Learning on Large Graphs: An Improved Green-function Method
Nie, Feiping, Song, Yitao, Chang, Wei, Wang, Rong, Li, Xuelong
In the graph-based semi-supervised learning, the Green-function method is a classical method that works by computing the Green's function in the graph space. However, when applied to large graphs, especially those sparse ones, this method performs unstably and unsatisfactorily. We make a detailed analysis on it and propose a novel method from the perspective of optimization. On fully connected graphs, the method is equivalent to the Green-function method and can be seen as another interpretation with physical meanings, while on non-fully connected graphs, it helps to explain why the Green-function method causes a mess on large sparse graphs. To solve this dilemma, we propose a workable approach to improve our proposed method. Unlike the original method, our improved method can also apply two accelerating techniques, Gaussian Elimination, and Anchored Graphs to become more efficient on large graphs. Finally, the extensive experiments prove our conclusions and the efficiency, accuracy, and stability of our improved Green's function method.
A Novel Dependency Framework for Enhancing Discourse Data Analysis
Sun, Kun, Wang, Rong
The development of different theories of discourse structure has led to the establishment of discourse corpora based on these theories. However, the existence of discourse corpora established on different theoretical bases creates challenges when it comes to exploring them in a consistent and cohesive way. This study has as its primary focus the conversion of PDTB annotations into dependency structures. It employs refined BERT-based discourse parsers to test the validity of the dependency data derived from the PDTB-style corpora in English, Chinese, and several other languages. By converting both PDTB and RST annotations for the same texts into dependencies, this study also applies ``dependency distance'' metrics to examine the correlation between RST dependencies and PDTB dependencies in English. The results show that the PDTB dependency data is valid and that there is a strong correlation between the two types of dependency distance. This study presents a comprehensive approach for analyzing and evaluating discourse corpora by employing discourse dependencies to achieve unified analysis. By applying dependency representations, we can extract data from PDTB, RST, and SDRT corpora in a coherent and unified manner. Moreover, the cross-linguistic validation establishes the framework's generalizability beyond English. The establishment of this comprehensive dependency framework overcomes limitations of existing discourse corpora, supporting a diverse range of algorithms and facilitating further studies in computational discourse analysis and language sciences.
Textual Similarity as a Key Metric in Machine Translation Quality Estimation
Sun, Kun, Wang, Rong
This study introduces "textual similarity" as a new metric for QE, using sentence transformers and cosine similarity to measure semantic closeness. Analyzing data from the MLQE-PE dataset, we found that textual similarity exhibits stronger correlations with human scores than traditional metrics (hter, model evaluation, sentence probability etc.). Employing GAMMs as a statistical tool, we demonstrated that textual similarity consistently outperforms other metrics across multiple language pairs in predicting human scores. We also found that "hter" actually failed to predict human scores in QE. Our findings highlight the effectiveness of textual similarity as a robust QE metric, recommending its integration with other metrics into QE frameworks and MT system training for improved accuracy and usability.
Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach
Sun, Kun, Wang, Rong, Søgaard, Anders
Amidst the rapid evolution of LLMs, the significance of evaluation in comprehending and propelling these models forward is increasingly paramount. Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs. However, the extent and nature of these impacts continue to be subjects of debate because most assessments have been restricted to a limited number of models and data points. Clarifying the effects of these factors on performance scores can be more effectively achieved through a statistical lens. Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods. With the advent of a uniform evaluation framework, our research leverages an expansive dataset of evaluation results, introducing a comprehensive statistical methodology. This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique, offering a robust and transparent approach to deciphering LLM performance data. Contrary to prevailing findings, our results challenge assumptions about emergent abilities and the influence of given training types and architectures in LLMs. These findings furnish new perspectives on the characteristics, intrinsic nature, and developmental trajectories of LLMs. By providing straightforward and reliable methods to scrutinize and reassess LLM performance data, this study contributes a nuanced perspective on LLM efficiency and potentials.
Continuous Output Personality Detection Models via Mixed Strategy Training
Wang, Rong, Sun, Kun
The traditional personality models only yield binary results. This paper presents a novel approach for training personality detection models that produce continuous output values, using mixed strategies. By leveraging the PANDORA dataset, which includes extensive personality labeling of Reddit comments, we developed models that predict the Big Five personality traits with high accuracy. Our approach involves fine-tuning a RoBERTa-base model with various strategies such as Multi-Layer Perceptron (MLP) integration, and hyperparameter tuning. The results demonstrate that our models significantly outperform traditional binary classification methods, offering precise continuous outputs for personality traits, thus enhancing applications in AI, psychology, human resources, marketing and health care fields.
Automatic Essay Multi-dimensional Scoring with Fine-tuning and Multiple Regression
Sun, Kun, Wang, Rong
Automated essay scoring (AES) involves predicting a score that reflects the writing quality of an essay. Most existing AES systems produce only a single overall score. However, users and L2 learners expect scores across different dimensions (e.g., vocabulary, grammar, coherence) for English essays in real-world applications. To address this need, we have developed two models that automatically score English essays across multiple dimensions by employing fine-tuning and other strategies on two large datasets. The results demonstrate that our systems achieve impressive performance in evaluation using three criteria: precision, F1 score, and Quadratic Weighted Kappa. Furthermore, our system outperforms existing methods in overall scoring.