Wang, Qi
Deep Learning Powered Estimate of The Extrinsic Parameters on Unmanned Surface Vehicles
Shen, Yi, Liu, Hao, Zhou, Chang, Wang, Wentao, Gao, Zijun, Wang, Qi
Unmanned Surface Vehicles (USVs) are pivotal in marine exploration, but their sensors' accuracy is compromised by the dynamic marine environment. Traditional calibration methods fall short in these conditions. This paper introduces a deep learning architecture that predicts changes in the USV's dynamic metacenter and refines sensors' extrinsic parameters in real time using a Time-Sequence General Regression Neural Network (GRNN) with Euler angles as input. Simulation data from Unity3D ensures robust training and testing. Experimental results show that the Time-Sequence GRNN achieves the lowest mean squared error (MSE) loss, outperforming traditional neural networks. This method significantly enhances sensor calibration for USVs, promising improved data accuracy in challenging maritime conditions. Future work will refine the network and validate results with real-world data.
Pretrained Mobility Transformer: A Foundation Model for Human Mobility
Wu, Xinhua, He, Haoyu, Wang, Yanchao, Wang, Qi
Ubiquitous mobile devices are generating vast amounts of location-based service data that reveal how individuals navigate and utilize urban spaces in detail. In this study, we utilize these extensive, unlabeled sequences of user trajectories to develop a foundation model for understanding urban space and human mobility. We introduce the \textbf{P}retrained \textbf{M}obility \textbf{T}ransformer (PMT), which leverages the transformer architecture to process user trajectories in an autoregressive manner, converting geographical areas into tokens and embedding spatial and temporal information within these representations. Experiments conducted in three U.S. metropolitan areas over a two-month period demonstrate PMT's ability to capture underlying geographic and socio-demographic characteristics of regions. The proposed PMT excels across various downstream tasks, including next-location prediction, trajectory imputation, and trajectory generation. These results support PMT's capability and effectiveness in decoding complex patterns of human mobility, offering new insights into urban spatial functionality and individual mobility preferences.
Text-only Synthesis for Image Captioning
Zhou, Qing, Huang, Junlin, Li, Qiang, Gao, Junyu, Wang, Qi
From paired image-text training to text-only training for image captioning, the pursuit of relaxing the requirements for high-cost and large-scale annotation of good quality data remains consistent. In this paper, we propose Text-only Synthesis for Image Captioning (ToCa), which further advances this relaxation with fewer human labor and less computing time. Specifically, we deconstruct caption text into structures and lexical words, which serve as the fundamental components of the caption. By combining different structures and lexical words as inputs to the large language model, massive captions that contain various patterns of lexical words are generated. This method not only approaches the target domain but also surpasses it by generating new captions, thereby enhancing the zero-shot generalization ability of the model. Considering the different levels of data access in the real world, we define three synthesis scenarios: cross-domain synthesis, in-domain synthesis, and data-efficient synthesis. Experiments in these scenarios demonstrate the generalizability, transferability and practicability of ToCa with a nearly 5 CIDEr improvement for zero-shot cross-domain captioning and a maximum increase of over 20 CIDEr for data-efficient captioning.
TD3 Based Collision Free Motion Planning for Robot Navigation
Liu, Hao, Shen, Yi, Zhou, Chang, Zou, Yuelin, Gao, Zijun, Wang, Qi
This paper addresses the challenge of collision-free motion planning in automated navigation within complex environments. Utilizing advancements in Deep Reinforcement Learning (DRL) and sensor technologies like LiDAR, we propose the TD3-DWA algorithm, an innovative fusion of the traditional Dynamic Window Approach (DWA) with the Twin Delayed Deep Deterministic Policy Gradient (TD3). This hybrid algorithm enhances the efficiency of robotic path planning by optimizing the sampling interval parameters of DWA to effectively navigate around both static and dynamic obstacles. The performance of the TD3-DWA algorithm is validated through various simulation experiments, demonstrating its potential to significantly improve the reliability and safety of autonomous navigation systems.
Like Humans to Few-Shot Learning through Knowledge Permeation of Vision and Text
Jia, Yuyu, Zhou, Qing, Huang, Wei, Gao, Junyu, Wang, Qi
Few-shot learning aims to generalize the recognizer from seen categories to an entirely novel scenario. With only a few support samples, several advanced methods initially introduce class names as prior knowledge for identifying novel classes. However, obstacles still impede achieving a comprehensive understanding of how to harness the mutual advantages of visual and textual knowledge. In this paper, we propose a coherent Bidirectional Knowledge Permeation strategy called BiKop, which is grounded in a human intuition: A class name description offers a general representation, whereas an image captures the specificity of individuals. BiKop primarily establishes a hierarchical joint general-specific representation through bidirectional knowledge permeation. On the other hand, considering the bias of joint representation towards the base set, we disentangle base-class-relevant semantics during training, thereby alleviating the suppression of potential novel-class-relevant information. Experiments on four challenging benchmarks demonstrate the remarkable superiority of BiKop. Our code will be publicly available.
Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks
Mei, Taiyuan, Zi, Yun, Cheng, Xiaohan, Gao, Zijun, Wang, Qi, Yang, Haowei
The internal structure and operation mechanism of large-scale language models are analyzed theoretically, especially how Transformer and its derivative architectures can restrict computing efficiency while capturing long-term dependencies. Further, we dig deep into the efficiency bottleneck of the training phase, and evaluate in detail the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies to accelerate convergence and reduce memory footprint. By analyzing the mathematical principles and implementation details of these algorithms, we reveal how they effectively improve training efficiency in practice. In terms of model deployment and inference optimization, this paper systematically reviews the latest advances in model compression techniques, focusing on strategies such as quantification, pruning, and knowledge distillation. By comparing the theoretical frameworks of these techniques and their effects in different application scenarios, we demonstrate their ability to significantly reduce model size and inference delay while maintaining model prediction accuracy. In addition, this paper critically examines the limitations of current efficiency optimization methods, such as the increased risk of overfitting, the control of performance loss after compression, and the problem of algorithm generality, and proposes some prospects for future research. In conclusion, this study provides a comprehensive theoretical framework for understanding the efficiency optimization of large-scale language models.
CVTGAD: Simplified Transformer with Cross-View Attention for Unsupervised Graph-level Anomaly Detection
Li, Jindong, Xing, Qianli, Wang, Qi, Chang, Yi
Unsupervised graph-level anomaly detection (UGAD) has received remarkable performance in various critical disciplines, such as chemistry analysis and bioinformatics. Existing UGAD paradigms often adopt data augmentation techniques to construct multiple views, and then employ different strategies to obtain representations from different views for jointly conducting UGAD. However, most previous works only considered the relationship between nodes/graphs from a limited receptive field, resulting in some key structure patterns and feature information being neglected. In addition, most existing methods consider different views separately in a parallel manner, which is not able to explore the inter-relationship across different views directly. Thus, a method with a larger receptive field that can explore the inter-relationship across different views directly is in need. In this paper, we propose a novel Simplified Transformer with Cross-View Attention for Unsupervised Graph-level Anomaly Detection, namely, CVTGAD. To increase the receptive field, we construct a simplified transformer-based module, exploiting the relationship between nodes/graphs from both intra-graph and inter-graph perspectives. Furthermore, we design a cross-view attention mechanism to directly exploit the view co-occurrence between different views, bridging the inter-view gap at node level and graph level. To the best of our knowledge, this is the first work to apply transformer and cross attention to UGAD, which realizes graph neural network and transformer working collaboratively. Extensive experiments on 15 real-world datasets of 3 fields demonstrate the superiority of CVTGAD on the UGAD task. The code is available at \url{https://github.com/jindongli-Ai/CVTGAD}.
Reinforcement Learning Approach for Integrating Compressed Contexts into Knowledge Graphs
Quach, Ngoc, Wang, Qi, Gao, Zijun, Sun, Qifeng, Guan, Bo, Floyd, Lillian
The widespread use of knowledge graphs in various fields has brought about a challenge in effectively integrating and updating information within them. When it comes to incorporating contexts, conventional methods often rely on rules or basic machine learning models, which may not fully grasp the complexity and fluidity of context information. This research suggests an approach based on reinforcement learning (RL), specifically utilizing Deep Q Networks (DQN) to enhance the process of integrating contexts into knowledge graphs. By considering the state of the knowledge graph as environment states defining actions as operations for integrating contexts and using a reward function to gauge the improvement in knowledge graph quality post-integration, this method aims to automatically develop strategies for optimal context integration. Our DQN model utilizes networks as function approximators, continually updating Q values to estimate the action value function, thus enabling effective integration of intricate and dynamic context information. Initial experimental findings show that our RL method outperforms techniques in achieving precise context integration across various standard knowledge graph datasets, highlighting the potential and effectiveness of reinforcement learning in enhancing and managing knowledge graphs.
PeerGPT: Probing the Roles of LLM-based Peer Agents as Team Moderators and Participants in Children's Collaborative Learning
Liu, Jiawen, Yao, Yuanyuan, An, Pengcheng, Wang, Qi
In children's collaborative learning, effective peer conversations can significantly enhance the quality of children's collaborative interactions. The integration of Large Language Model (LLM) agents into this setting explores their novel role as peers, assessing impacts as team moderators and participants. We invited two groups of participants to engage in a collaborative learning workshop, where they discussed and proposed conceptual solutions to a design problem. The peer conversation transcripts were analyzed using thematic analysis. We discovered that peer agents, while managing discussions effectively as team moderators, sometimes have their instructions disregarded. As participants, they foster children's creative thinking but may not consistently provide timely feedback. These findings highlight potential design improvements and considerations for peer agents in both roles.
MuChin: A Chinese Colloquial Description Benchmark for Evaluating Language Models in the Field of Music
Wang, Zihao, Li, Shuyu, Zhang, Tao, Wang, Qi, Yu, Pengfei, Luo, Jinyang, Liu, Yan, Xi, Ming, Zhang, Kejun
The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark and the code for scoring have been open-sourced.