Not enough data to create a plot.
Try a different view from the menu above.
Wang, Pinghui
A Secure and Intelligent Data Sharing Scheme for UAV-Assisted Disaster Rescue
Wang, Yuntao, Su, Zhou, Xu, Qichao, Li, Ruidong, Luan, Tom H., Wang, Pinghui
Unmanned aerial vehicles (UAVs) have the potential to establish flexible and reliable emergency networks in disaster sites when terrestrial communication infrastructures go down. Nevertheless, potential security threats may occur on UAVs during data transmissions due to the untrusted environment and open-access UAV networks. Moreover, UAVs typically have limited battery and computation capacity, making them unaffordable for heavy security provisioning operations when performing complicated rescue tasks. In this paper, we develop RescueChain, a secure and efficient information sharing scheme for UAV-assisted disaster rescue. Specifically, we first implement a lightweight blockchain-based framework to safeguard data sharing under disasters and immutably trace misbehaving entities. A reputation-based consensus protocol is devised to adapt the weakly connected environment with improved consensus efficiency and promoted UAVs' honest behaviors. Furthermore, we introduce a novel vehicular fog computing (VFC)-based off-chain mechanism by leveraging ground vehicles as moving fog nodes to offload UAVs' heavy data processing and storage tasks. To offload computational tasks from the UAVs to ground vehicles having idle computing resources, an optimal allocation strategy is developed by choosing payoffs that achieve equilibrium in a Stackelberg game formulation of the allocation problem. For lack of sufficient knowledge on network model parameters and users' private cost parameters in practical environment, we also design a two-tier deep reinforcement learning-based algorithm to seek the optimal payment and resource strategies of UAVs and vehicles with improved learning efficiency. Simulation results show that RescueChain can effectively accelerate consensus process, improve offloading efficiency, reduce energy consumption, and enhance user payoffs.
Node Classification on Graphs with Few-Shot Novel Labels via Meta Transformed Network Embedding
Lan, Lin, Wang, Pinghui, Du, Xuefeng, Song, Kaikai, Tao, Jing, Guan, Xiaohong
We study the problem of node classification on graphs with few-shot novel labels, which has two distinctive properties: (1) There are novel labels to emerge in the graph; (2) The novel labels have only a few representative nodes for training a classifier. The study of this problem is instructive and corresponds to many applications such as recommendations for newly formed groups with only a few users in online social networks. To cope with this problem, we propose a novel Meta Transformed Network Embedding framework (MetaTNE), which consists of three modules: (1) A \emph{structural module} provides each node a latent representation according to the graph structure. (2) A \emph{meta-learning module} captures the relationships between the graph structure and the node labels as prior knowledge in a meta-learning manner. Additionally, we introduce an \emph{embedding transformation function} that remedies the deficiency of the straightforward use of meta-learning. Inherently, the meta-learned prior knowledge can be used to facilitate the learning of few-shot novel labels. (3) An \emph{optimization module} employs a simple yet effective scheduling strategy to train the above two modules with a balance between graph structure learning and meta-learning. Experiments on four real-world datasets show that MetaTNE brings a huge improvement over the state-of-the-art methods.
Meta Reinforcement Learning with Task Embedding and Shared Policy
Lan, Lin, Li, Zhenguo, Guan, Xiaohong, Wang, Pinghui
Despite significant progress, deep reinforcement learning (RL) suffers from data-inefficiency and limited generalization. Recent efforts apply meta-learning to learn a meta-learner from a set of RL tasks such that a novel but related task could be solved quickly. Though specific in some ways, different tasks in meta-RL are generally similar at a high level. However, most meta-RL methods do not explicitly and adequately model the specific and shared information among different tasks, which limits their ability to learn training tasks and to generalize to novel tasks. In this paper, we propose to capture the shared information on the one hand and meta-learn how to quickly abstract the specific information about a task on the other hand. Methodologically, we train an SGD meta-learner to quickly optimize a task encoder for each task, which generates a task embedding based on past experience. Meanwhile, we learn a policy which is shared across all tasks and conditioned on task embeddings. Empirical results on four simulated tasks demonstrate that our method has better learning capacity on both training and novel tasks and attains up to 3 to 4 times higher returns compared to baselines.
MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions
Xu, Nuo, Wang, Pinghui, Chen, Long, Tao, Jing, Zhao, Junzhou
Predicting interactions between structured entities lies at the core of numerous tasks such as drug regimen and new material design. In recent years, graph neural networks have become attractive. They represent structured entities as graphs and then extract features from each individual graph using graph convolution operations. However, these methods have some limitations: i) their networks only extract features from a fix-sized subgraph structure (i.e., a fix-sized receptive field) of each node, and ignore features in substructures of different sizes, and ii) features are extracted by considering each entity independently, which may not effectively reflect the interaction between two entities. To resolve these problems, we present MR-GNN, an end-to-end graph neural network with the following features: i) it uses a multi-resolution based architecture to extract node features from different neighborhoods of each node, and, ii) it uses dual graph-state long short-term memory networks (L-STMs) to summarize local features of each graph and extracts the interaction features between pairwise graphs. Experiments conducted on real-world datasets show that MR-GNN improves the prediction of state-of-the-art methods.