Not enough data to create a plot.
Try a different view from the menu above.
Wang, Ping
Multi-modal Latent Space Learning for Chain-of-Thought Reasoning in Language Models
He, Liqi, Li, Zuchao, Cai, Xiantao, Wang, Ping
Chain-of-thought (CoT) reasoning has exhibited impressive performance in language models for solving complex tasks and answering questions. However, many real-world questions require multi-modal information, such as text and images. Previous research on multi-modal CoT has primarily focused on extracting fixed image features from off-the-shelf vision models and then fusing them with text using attention mechanisms. This approach has limitations because these vision models were not designed for complex reasoning tasks and do not align well with language thoughts. To overcome this limitation, we introduce a novel approach for multi-modal CoT reasoning that utilizes latent space learning via diffusion processes to generate effective image features that align with language thoughts. Our method fuses image features and text representations at a deep level and improves the complex reasoning ability of multi-modal CoT. We demonstrate the efficacy of our proposed method on multi-modal ScienceQA and machine translation benchmarks, achieving state-of-the-art performance on ScienceQA. Overall, our approach offers a more robust and effective solution for multi-modal reasoning in language models, enhancing their ability to tackle complex real-world problems.
Improved Efficient Two-Stage Denoising Diffusion Power System Measurement Recovery Against False Data Injection Attacks and Data Losses
Pei, Jianhua, Wang, Jingyu, Shi, Dongyuan, Wang, Ping
Measurement uncertainties, represented by cyber-attacks and data losses, seriously degrade the quality of power system measurements. Fortunately, the powerful generation ability of the denoising diffusion models can enable more precise measurement generation for power system data recovery. However, the controllable data generation and efficient computing methods of denoising diffusion models for deterministic trajectory still need further investigation. To this end, this paper proposes an improved two-stage denoising diffusion model (TSDM) to identify and reconstruct the measurements with various measurement uncertainties. The first stage of the model comprises a classifier-guided conditional anomaly detection component, while the second stage involves diffusion-based measurement imputation component. Moreover, the proposed TSDM adopts precise means and optimal variances to accelerate the diffusion generation process with subsequence sampling. Extensive numerical case studies demonstrate that the proposed TSDM can accurately recover power system measurements despite strong randomness under renewable energy integration and highly nonlinear dynamics under complex cyber-physical contingencies. Additionally, the proposed TSDM has stronger robustness compared to existing reconstruction networks and exhibits lower computational complexity than general denoising diffusion models.
ArcMMLU: A Library and Information Science Benchmark for Large Language Models
Zhang, Shitou, Li, Zuchao, Liu, Xingshen, Yang, Liming, Wang, Ping
In light of the rapidly evolving capabilities of large language models (LLMs), it becomes imperative to develop rigorous domain-specific evaluation benchmarks to accurately assess their capabilities. In response to this need, this paper introduces ArcMMLU, a specialized benchmark tailored for the Library & Information Science (LIS) domain in Chinese. This benchmark aims to measure the knowledge and reasoning capability of LLMs within four key sub-domains: Archival Science, Data Science, Library Science, and Information Science. Following the format of MMLU/CMMLU, we collected over 6,000 high-quality questions for the compilation of ArcMMLU. This extensive compilation can reflect the diverse nature of the LIS domain and offer a robust foundation for LLM evaluation. Our comprehensive evaluation reveals that while most mainstream LLMs achieve an average accuracy rate above 50% on ArcMMLU, there remains a notable performance gap, suggesting substantial headroom for refinement in LLM capabilities within the LIS domain. Further analysis explores the effectiveness of few-shot examples on model performance and highlights challenging questions where models consistently underperform, providing valuable insights for targeted improvements. ArcMMLU fills a critical gap in LLM evaluations within the Chinese LIS domain and paves the way for future development of LLMs tailored to this specialized area.
Straggler-resilient Federated Learning: Tackling Computation Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network
Wu, Hongda, Wang, Ping, Narayana, C V Aswartha
Federated Learning (FL) enables many resource-limited devices to train a model collaboratively without data sharing. However, many existing works focus on model-homogeneous FL, where the global and local models are the same size, ignoring the inherently heterogeneous computational capabilities of different devices and restricting resource-constrained devices from contributing to FL. In this paper, we consider model-heterogeneous FL and propose Federated Partial Model Training (FedPMT), where devices with smaller computational capabilities work on partial models (subsets of the global model) and contribute to the global model. Different from Dropout-based partial model generation, which removes neurons in hidden layers at random, model training in FedPMT is achieved from the back-propagation perspective. As such, all devices in FedPMT prioritize the most crucial parts of the global model. Theoretical analysis shows that the proposed partial model training design has a similar convergence rate to the widely adopted Federated Averaging (FedAvg) algorithm, $\mathcal{O}(1/T)$, with the sub-optimality gap enlarged by a constant factor related to the model splitting design in FedPMT. Empirical results show that FedPMT significantly outperforms the existing benchmark FedDrop. Meanwhile, compared to the popular model-homogeneous benchmark, FedAvg, FedPMT reaches the learning target in a shorter completion time, thus achieving a better trade-off between learning accuracy and completion time.
Towards Semi-Structured Automatic ICD Coding via Tree-based Contrastive Learning
Lu, Chang, Reddy, Chandan K., Wang, Ping, Ning, Yue
Automatic coding of International Classification of Diseases (ICD) is a multi-label text categorization task that involves extracting disease or procedure codes from clinical notes. Despite the application of state-of-the-art natural language processing (NLP) techniques, there are still challenges including limited availability of data due to privacy constraints and the high variability of clinical notes caused by different writing habits of medical professionals and various pathological features of patients. In this work, we investigate the semi-structured nature of clinical notes and propose an automatic algorithm to segment them into sections. To address the variability issues in existing ICD coding models with limited data, we introduce a contrastive pre-training approach on sections using a soft multi-label similarity metric based on tree edit distance. Additionally, we design a masked section training strategy to enable ICD coding models to locate sections related to ICD codes. Extensive experimental results demonstrate that our proposed training strategies effectively enhance the performance of existing ICD coding methods.
Multi-Label Clinical Time-Series Generation via Conditional GAN
Lu, Chang, Reddy, Chandan K., Wang, Ping, Nie, Dong, Ning, Yue
In recent years, deep learning has been successfully adopted in a wide range of applications related to electronic health records (EHRs) such as representation learning and clinical event prediction. However, due to privacy constraints, limited access to EHR becomes a bottleneck for deep learning research. To mitigate these concerns, generative adversarial networks (GANs) have been successfully used for generating EHR data. However, there are still challenges in high-quality EHR generation, including generating time-series EHR data and imbalanced uncommon diseases. In this work, we propose a Multi-label Time-series GAN (MTGAN) to generate EHR and simultaneously improve the quality of uncommon disease generation. The generator of MTGAN uses a gated recurrent unit (GRU) with a smooth conditional matrix to generate sequences and uncommon diseases. The critic gives scores using Wasserstein distance to recognize real samples from synthetic samples by considering both data and temporal features. We also propose a training strategy to calculate temporal features for real data and stabilize GAN training. Furthermore, we design multiple statistical metrics and prediction tasks to evaluate the generated data. Experimental results demonstrate the quality of the synthetic data and the effectiveness of MTGAN in generating realistic sequential EHR data, especially for uncommon diseases.
ArcGPT: A Large Language Model Tailored for Real-world Archival Applications
Zhang, Shitou, Hou, Jingrui, Peng, Siyuan, Li, Zuchao, Hu, Qibiao, Wang, Ping
Archives play a crucial role in preserving information and knowledge, and the exponential growth of such data necessitates efficient and automated tools for managing and utilizing archive information resources. Archival applications involve managing massive data that are challenging to process and analyze. Although LLMs have made remarkable progress in diverse domains, there are no publicly available archives tailored LLM. Addressing this gap, we introduce ArcGPT, to our knowledge, the first general-purpose LLM tailored to the archival field. To enhance model performance on real-world archival tasks, ArcGPT has been pre-trained on massive and extensive archival domain data. Alongside ArcGPT, we release AMBLE, a benchmark comprising four real-world archival tasks. Evaluation on AMBLE shows that ArcGPT outperforms existing state-of-the-art models, marking a substantial step forward in effective archival data management. Ultimately, ArcGPT aims to better serve the archival community, aiding archivists in their crucial role of preserving and harnessing our collective information and knowledge.
Multiobjective Hydropower Reservoir Operation Optimization with Transformer-Based Deep Reinforcement Learning
Wu, Rixin, Wang, Ran, Hao, Jie, Wu, Qiang, Wang, Ping
Due to shortage of water resources and increasing water demands, the joint operation of multireservoir systems for balancing power generation, ecological protection, and the residential water supply has become a critical issue in hydropower management. However, the numerous constraints and nonlinearity of multiple reservoirs make solving this problem time-consuming. To address this challenge, a deep reinforcement learning approach that incorporates a transformer framework is proposed. The multihead attention mechanism of the encoder effectively extracts information from reservoirs and residential areas, and the multireservoir attention network of the decoder generates suitable operational decisions. The proposed method is applied to Lake Mead and Lake Powell in the Colorado River Basin. The experimental results demonstrate that the transformer-based deep reinforcement learning approach can produce appropriate operational outcomes. Compared to a state-of-the-art method, the operation strategies produced by the proposed approach generate 10.11% more electricity, reduce the amended annual proportional flow deviation by 39.69%, and increase water supply revenue by 4.10%. Consequently, the proposed approach offers an effective method for the multiobjective operation of multihydropower reservoir systems.
Solving Coupled Differential Equation Groups Using PINO-CDE
Ding, Wenhao, He, Qing, Tong, Hanghang, Wang, Qingjing, Wang, Ping
As a fundamental mathmatical tool in many engineering disciplines, coupled differential equation groups are being widely used to model complex structures containing multiple physical quantities. Engineers constantly adjust structural parameters at the design stage, which requires a highly efficient solver. The rise of deep learning technologies has offered new perspectives on this task. Unfortunately, existing black-box models suffer from poor accuracy and robustness, while the advanced methodologies of single-output operator regression cannot deal with multiple quantities simultaneously. To address these challenges, we propose PINO-CDE, a deep learning framework for solving coupled differential equation groups (CDEs) along with an equation normalization algorithm for performance enhancing. Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs, instead of training dozens, or even hundreds of networks as in the existing literature. We demonstrate the flexibility and feasibility of PINO-CDE for one toy example and two engineering applications: vehicle-track coupled dynamics (VTCD) and reliability assessment for a four-storey building (uncertainty propagation). The performance of VTCD indicates that PINO-CDE outperforms existing software and deep learning-based methods in terms of efficiency and precision, respectively. For the uncertainty propagation task, PINO-CDE provides higher-resolution results in less than a quarter of the time incurred when using the probability density evolution method (PDEM). This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.
AdvFunMatch: When Consistent Teaching Meets Adversarial Robustness
Wu, Zihui, Gao, Haichang, Zhou, Bingqian, Wang, Ping
\emph{Consistent teaching} is an effective paradigm for implementing knowledge distillation (KD), where both student and teacher models receive identical inputs, and KD is treated as a function matching task (FunMatch). However, one limitation of FunMatch is that it does not account for the transfer of adversarial robustness, a model's resistance to adversarial attacks. To tackle this problem, we propose a simple but effective strategy called Adversarial Function Matching (AdvFunMatch), which aims to match distributions for all data points within the $\ell_p$-norm ball of the training data, in accordance with consistent teaching. Formulated as a min-max optimization problem, AdvFunMatch identifies the worst-case instances that maximizes the KL-divergence between teacher and student model outputs, which we refer to as "mismatched examples," and then matches the outputs on these mismatched examples. Our experimental results show that AdvFunMatch effectively produces student models with both high clean accuracy and robustness. Furthermore, we reveal that strong data augmentations (\emph{e.g.}, AutoAugment) are beneficial in AdvFunMatch, whereas prior works have found them less effective in adversarial training. Code is available at \url{https://gitee.com/zihui998/adv-fun-match}.