Not enough data to create a plot.
Try a different view from the menu above.
Wang, Pengyu
Coastal Underwater Evidence Search System with Surface-Underwater Collaboration
Lin, Hin Wang, Wang, Pengyu, Yang, Zhaohua, Leung, Ka Chun, Bao, Fangming, Kui, Ka Yu, Xu, Jian Xiang Erik, Shi, Ling
The Coastal underwater evidence search system with surface-underwater collaboration is designed to revolutionize the search for artificial objects in coastal underwater environments, overcoming limitations associated with traditional methods such as divers and tethered remotely operated vehicles. Our innovative multi-robot collaborative system consists of three parts, an autonomous surface vehicle as a mission control center, a towed underwater vehicle for wide-area search, and a biomimetic underwater robot inspired by marine organisms for detailed inspections of identified areas. We conduct extensive simulations and real-world experiments in pond environments and coastal fields to demonstrate the system potential to surpass the limitations of conventional underwater search methods, offering a robust and efficient solution for law enforcement and recovery operations in marine settings.
Case2Code: Learning Inductive Reasoning with Synthetic Data
Shao, Yunfan, Li, Linyang, Ma, Yichuan, Li, Peiji, Song, Demin, Cheng, Qinyuan, Li, Shimin, Li, Xiaonan, Wang, Pengyu, Guo, Qipeng, Yan, Hang, Qiu, Xipeng, Huang, Xuanjing, Lin, Dahua
Complex reasoning is an impressive ability shown by large language models (LLMs). Most LLMs are skilled in deductive reasoning, such as chain-of-thought prompting or iterative tool-using to solve challenging tasks step-by-step. In this paper, we hope to focus on evaluating and teaching LLMs to conduct inductive reasoning, that is, LLMs are supposed to infer underlying rules by observing examples or sequential transformations. However, collecting large-scale and diverse human-generated inductive data is challenging. We focus on data synthesis in the code domain and propose a \textbf{Case2Code} task by exploiting the expressiveness and correctness of programs. Specifically, we collect a diverse set of executable programs, synthesize input-output transformations for each program, and force LLMs to infer the underlying code implementations based on the synthetic I/O cases. We first evaluate representative LLMs on the synthesized Case2Code task and demonstrate that the Case-to-code induction is challenging for LLMs. Then, we synthesize large-scale Case2Code training samples to train LLMs to perform inductive reasoning. Experimental results show that such induction training benefits not only in distribution Case2Code performance but also enhances various coding abilities of trained LLMs, demonstrating the great potential of learning inductive reasoning via synthetic data.
QUADFormer: Learning-based Detection of Cyber Attacks in Quadrotor UAVs
Wang, Pengyu, Yang, Zhaohua, Yang, Nachuan, Wang, Zikai, Li, Jialu, Zhang, Fan, Wang, Chaoqun, Wang, Jiankun, Meng, Max Q. -H., Shi, Ling
Safety-critical intelligent cyber-physical systems, such as quadrotor unmanned aerial vehicles (UAVs), are vulnerable to different types of cyber attacks, and the absence of timely and accurate attack detection can lead to severe consequences. When UAVs are engaged in large outdoor maneuvering flights, their system constitutes highly nonlinear dynamics that include non-Gaussian noises. Therefore, the commonly employed traditional statistics-based and emerging learning-based attack detection methods do not yield satisfactory results. In response to the above challenges, we propose QUADFormer, a novel Quadrotor UAV Attack Detection framework with transFormer-based architecture. This framework includes a residue generator designed to generate a residue sequence sensitive to anomalies. Subsequently, this sequence is fed into a transformer structure with disparity in correlation to specifically learn its statistical characteristics for the purpose of classification and attack detection. Finally, we design an alert module to ensure the safe execution of tasks by UAVs under attack conditions. We conduct extensive simulations and real-world experiments, and the results show that our method has achieved superior detection performance compared with many state-of-the-art methods.
MINER-RRT*: A Hierarchical and Fast Trajectory Planning Framework in 3D Cluttered Environments
Wang, Pengyu, Tang, Jiawei, Lin, Hin Wang, Zhang, Fan, Wang, Chaoqun, Wang, Jiankun, Shi, Ling, Meng, Max Q. -H.
Trajectory planning for quadrotors in cluttered environments has been challenging in recent years. While many trajectory planning frameworks have been successful, there still exists potential for improvements, particularly in enhancing the speed of generating efficient trajectories. In this paper, we present a novel hierarchical trajectory planning framework to reduce computational time and memory usage called MINER-RRT*, which consists of two main components. First, we propose a sampling-based path planning method boosted by neural networks, where the predicted heuristic region accelerates the convergence of rapidly-exploring random trees. Second, we utilize the optimal conditions derived from the quadrotor's differential flatness properties to construct polynomial trajectories that minimize control effort in multiple stages. Extensive simulation and real-world experimental results demonstrate that, compared to several state-of-the-art (SOTA) approaches, our method can generate high-quality trajectories with better performance in 3D cluttered environments.
Sparsity-Accelerated Training for Large Language Models
Ma, Da, Chen, Lu, Wang, Pengyu, Xu, Hongshen, Li, Hanqi, Sun, Liangtai, Zhu, Su, Fan, Shuai, Yu, Kai
Large language models (LLMs) have demonstrated proficiency across various natural language processing (NLP) tasks but often require additional training, such as continual pre-training and supervised fine-tuning. However, the costs associated with this, primarily due to their large parameter count, remain high. This paper proposes leveraging \emph{sparsity} in pre-trained LLMs to expedite this training process. By observing sparsity in activated neurons during forward iterations, we identify the potential for computational speed-ups by excluding inactive neurons. We address associated challenges by extending existing neuron importance evaluation metrics and introducing a ladder omission rate scheduler. Our experiments on Llama-2 demonstrate that Sparsity-Accelerated Training (SAT) achieves comparable or superior performance to standard training while significantly accelerating the process. Specifically, SAT achieves a $45\%$ throughput improvement in continual pre-training and saves $38\%$ training time in supervised fine-tuning in practice. It offers a simple, hardware-agnostic, and easily deployable framework for additional LLM training. Our code is available at https://github.com/OpenDFM/SAT.
NewsBench: A Systematic Evaluation Framework for Assessing Editorial Capabilities of Large Language Models in Chinese Journalism
Li, Miao, Chen, Ming-Bin, Tang, Bo, Hou, Shengbin, Wang, Pengyu, Deng, Haiying, Li, Zhiyu, Xiong, Feiyu, Mao, Keming, Cheng, Peng, Luo, Yi
We present NewsBench, a novel evaluation framework to systematically assess the capabilities of Large Language Models (LLMs) for editorial capabilities in Chinese journalism. Our constructed benchmark dataset is focused on four facets of writing proficiency and six facets of safety adherence, and it comprises manually and carefully designed 1,267 test samples in the types of multiple choice questions and short answer questions for five editorial tasks in 24 news domains. To measure performances, we propose different GPT-4 based automatic evaluation protocols to assess LLM generations for short answer questions in terms of writing proficiency and safety adherence, and both are validated by the high correlations with human evaluations. Based on the systematic evaluation framework, we conduct a comprehensive analysis of ten popular LLMs which can handle Chinese. The experimental results highlight GPT-4 and ERNIE Bot as top performers, yet reveal a relative deficiency in journalistic safety adherence in creative writing tasks. Our findings also underscore the need for enhanced ethical guidance in machine-generated journalistic content, marking a step forward in aligning LLMs with journalistic standards and safety considerations.
SpeechAlign: Aligning Speech Generation to Human Preferences
Zhang, Dong, Li, Zhaowei, Li, Shimin, Zhang, Xin, Wang, Pengyu, Zhou, Yaqian, Qiu, Xipeng
Speech language models have significantly advanced in generating realistic speech, with neural codec language models standing out. However, the integration of human feedback to align speech outputs to human preferences is often neglected. This paper addresses this gap by first analyzing the distribution gap in codec language models, highlighting how it leads to discrepancies between the training and inference phases, which negatively affects performance. Then we explore leveraging learning from human feedback to bridge the distribution gap. We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences. SpeechAlign involves constructing a preference codec dataset contrasting golden codec tokens against synthetic tokens, followed by preference optimization to improve the codec language model. This cycle of improvement is carried out iteratively to steadily convert weak models to strong ones. Through both subjective and objective evaluations, we show that SpeechAlign can bridge the distribution gap and facilitating continuous self-improvement of the speech language model. Moreover, SpeechAlign exhibits robust generalization capabilities and works for smaller models. Code and models will be available at https://github.com/0nutation/SpeechGPT.
Medical Image Synthesis via Fine-Grained Image-Text Alignment and Anatomy-Pathology Prompting
Chen, Wenting, Wang, Pengyu, Ren, Hui, Sun, Lichao, Li, Quanzheng, Yuan, Yixuan, Li, Xiang
Data scarcity and privacy concerns limit the availability of high-quality medical images for public use, which can be mitigated through medical image synthesis. However, current medical image synthesis methods often struggle to accurately capture the complexity of detailed anatomical structures and pathological conditions. To address these challenges, we propose a novel medical image synthesis model that leverages fine-grained image-text alignment and anatomy-pathology prompts to generate highly detailed and accurate synthetic medical images. Our method integrates advanced natural language processing techniques with image generative modeling, enabling precise alignment between descriptive text prompts and the synthesized images' anatomical and pathological details. The proposed approach consists of two key components: an anatomy-pathology prompting module and a fine-grained alignment-based synthesis module. The anatomy-pathology prompting module automatically generates descriptive prompts for high-quality medical images. To further synthesize high-quality medical images from the generated prompts, the fine-grained alignment-based synthesis module pre-defines a visual codebook for the radiology dataset and performs fine-grained alignment between the codebook and generated prompts to obtain key patches as visual clues, facilitating accurate image synthesis. We validate the superiority of our method through experiments on public chest X-ray datasets and demonstrate that our synthetic images preserve accurate semantic information, making them valuable for various medical applications.
DenoSent: A Denoising Objective for Self-Supervised Sentence Representation Learning
Wang, Xinghao, He, Junliang, Wang, Pengyu, Zhou, Yunhua, Sun, Tianxiang, Qiu, Xipeng
Contrastive-learning-based methods have dominated sentence representation learning. These methods regularize the representation space by pulling similar sentence representations closer and pushing away the dissimilar ones and have been proven effective in various NLP tasks, e.g., semantic textual similarity (STS) tasks. However, it is challenging for these methods to learn fine-grained semantics as they only learn from the inter-sentence perspective, i.e., their supervision signal comes from the relationship between data samples. In this work, we propose a novel denoising objective that inherits from another perspective, i.e., the intra-sentence perspective. By introducing both discrete and continuous noise, we generate noisy sentences and then train our model to restore them to their original form. Our empirical evaluations demonstrate that this approach delivers competitive results on both semantic textual similarity (STS) and a wide range of transfer tasks, standing up well in comparison to contrastive-learning-based methods. Notably, the proposed intra-sentence denoising objective complements existing inter-sentence contrastive methodologies and can be integrated with them to further enhance performance. Our code is available at https://github.com/xinghaow99/DenoSent.
InferAligner: Inference-Time Alignment for Harmlessness through Cross-Model Guidance
Wang, Pengyu, Zhang, Dong, Li, Linyang, Tan, Chenkun, Wang, Xinghao, Ren, Ke, Jiang, Botian, Qiu, Xipeng
With the rapid development of large language models (LLMs), they are not only used as general-purpose AI assistants but are also customized through further fine-tuning to meet the requirements of different applications. A pivotal factor in the success of current LLMs is the alignment process. Current alignment methods, such as supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), focus on training-time alignment and are often complex and cumbersome to implement. Therefore, we develop \textbf{InferAligner}, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment. InferAligner utilizes safety steering vectors extracted from safety-aligned model to modify the activations of the target model when responding to harmful inputs, thereby guiding the target model to provide harmless responses. Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics, as well as to multimodal large language models (MLLMs) such as LLaVA. It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.