Plotting

 Wang, Pengfei


PM2: A New Prompting Multi-modal Model Paradigm for Few-shot Medical Image Classification

arXiv.org Artificial Intelligence

Few-shot learning has been successfully applied to medical image classification as only very few medical examples are available for training. Due to the challenging problem of limited number of annotated medical images, image representations should not be solely derived from a single image modality which is insufficient for characterizing concept classes. In this paper, we propose a new prompting multi-modal model paradigm on medical image classification based on multi-modal foundation models, called PM2. Besides image modality,PM2 introduces another supplementary text input, known as prompt, to further describe corresponding image or concept classes and facilitate few-shot learning across diverse modalities. To better explore the potential of prompt engineering, we empirically investigate five distinct prompt schemes under the new paradigm. Furthermore, linear probing in multi-modal models acts as a linear classification head taking as input only class token, which ignores completely merits of rich statistics inherent in high-level visual tokens. Thus, we alternatively perform a linear classification on feature distribution of visual tokens and class token simultaneously. To effectively mine such rich statistics, a global covariance pooling with efficient matrix power normalization is used to aggregate visual tokens. Then we study and combine two classification heads. One is shared for class token of image from vision encoder and prompt representation encoded by text encoder. The other is to classification on feature distribution of visual tokens from vision encoder. Extensive experiments on three medical datasets show that our PM2 significantly outperforms counterparts regardless of prompt schemes and achieves state-of-the-art performance.


TFWT: Tabular Feature Weighting with Transformer

arXiv.org Artificial Intelligence

In this paper, we propose a novel feature weighting method to address the limitation of existing feature processing methods for tabular data. Typically the existing methods assume equal importance across all samples and features in one dataset. This simplified processing methods overlook the unique contributions of each feature, and thus may miss important feature information. As a result, it leads to suboptimal performance in complex datasets with rich features. To address this problem, we introduce Tabular Feature Weighting with Transformer, a novel feature weighting approach for tabular data. Our method adopts Transformer to capture complex feature dependencies and contextually assign appropriate weights to discrete and continuous features. Besides, we employ a reinforcement learning strategy to further fine-tune the weighting process. Our extensive experimental results across various real-world datasets and diverse downstream tasks show the effectiveness of TFWT and highlight the potential for enhancing feature weighting in tabular data analysis.


A Comprehensive Survey on Data Augmentation

arXiv.org Artificial Intelligence

Data augmentation is a series of techniques that generate high-quality artificial data by manipulating existing data samples. By leveraging data augmentation techniques, AI models can achieve significantly improved applicability in tasks involving scarce or imbalanced datasets, thereby substantially enhancing AI models' generalization capabilities. Existing literature surveys only focus on a certain type of specific modality data, and categorize these methods from modality-specific and operation-centric perspectives, which lacks a consistent summary of data augmentation methods across multiple modalities and limits the comprehension of how existing data samples serve the data augmentation process. To bridge this gap, we propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities. Specifically, from a data-centric perspective, this survey proposes a modality-independent taxonomy by investigating how to take advantage of the intrinsic relationship between data samples, including single-wise, pair-wise, and population-wise sample data augmentation methods. Additionally, we categorize data augmentation methods across five data modalities through a unified inductive approach.


FedGCS: A Generative Framework for Efficient Client Selection in Federated Learning via Gradient-based Optimization

arXiv.org Artificial Intelligence

Federated Learning faces significant challenges in statistical and system heterogeneity, along with high energy consumption, necessitating efficient client selection strategies. Traditional approaches, including heuristic and learning-based methods, fall short of addressing these complexities holistically. In response, we propose FedGCS, a novel generative client selection framework that innovatively recasts the client selection process as a generative task. Drawing inspiration from the methodologies used in large language models, FedGCS efficiently encodes abundant decision-making knowledge within a continuous representation space, enabling efficient gradient-based optimization to search for optimal client selection that will be finally output via generation. The framework comprises four steps: (1) automatic collection of diverse "selection-score" pair data using classical client selection methods; (2) training an encoder-evaluator-decoder framework on this data to construct a continuous representation space; (3) employing gradient-based optimization in this space for optimal client selection; (4) generating the final optimal client selection via using beam search for the well-trained decoder. FedGCS outperforms traditional methods by being more comprehensive, generalizable, and efficient, simultaneously optimizing for model performance, latency, and energy consumption. The effectiveness of FedGCS is proven through extensive experimental analyses.


scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding

arXiv.org Artificial Intelligence

Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular heterogeneity and diversity, offering invaluable insights for bioinformatics advancements. Despite its potential, traditional clustering methods in scRNA-seq data analysis often neglect the structural information embedded in gene expression profiles, crucial for understanding cellular correlations and dependencies. Existing strategies, including graph neural networks, face challenges in handling the inefficiency due to scRNA-seq data's intrinsic high-dimension and high-sparsity. Addressing these limitations, we introduce scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel framework designed for efficient and accurate clustering of scRNA-seq data that simultaneously utilizes intercellular high-order structural information. scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information, overcoming the over-smoothing and inefficiency issues prevalent in prior graph neural network methods. (ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data, specifically its high-dimension and high-sparsity. (iii) An autoencoder-based feature learning module that simplifies model complexity through effective dimension reduction and feature extraction. Our extensive experiments on 6 datasets demonstrate scCDCG's superior performance and efficiency compared to 7 established models, underscoring scCDCG's potential as a transformative tool in scRNA-seq data analysis. Our code is available at: https://github.com/XPgogogo/scCDCG.


Question Calibration and Multi-Hop Modeling for Temporal Question Answering

arXiv.org Artificial Intelligence

Many models that leverage knowledge graphs (KGs) have recently demonstrated remarkable success in question answering (QA) tasks. In the real world, many facts contained in KGs are time-constrained thus temporal KGQA has received increasing attention. Despite the fruitful efforts of previous models in temporal KGQA, they still have several limitations. (I) They adopt pre-trained language models (PLMs) to obtain question representations, while PLMs tend to focus on entity information and ignore entity transfer caused by temporal constraints, and finally fail to learn specific temporal representations of entities. (II) They neither emphasize the graph structure between entities nor explicitly model the multi-hop relationship in the graph, which will make it difficult to solve complex multi-hop question answering. To alleviate this problem, we propose a novel Question Calibration and Multi-Hop Modeling (QC-MHM) approach. Specifically, We first calibrate the question representation by fusing the question and the time-constrained concepts in KG. Then, we construct the GNN layer to complete multi-hop message passing. Finally, the question representation is combined with the embedding output by the GNN to generate the final prediction. Empirical results verify that the proposed model achieves better performance than the state-of-the-art models in the benchmark dataset. Notably, the Hits@1 and Hits@10 results of QC-MHM on the CronQuestions dataset's complex questions are absolutely improved by 5.1% and 1.2% compared to the best-performing baseline. Moreover, QC-MHM can generate interpretable and trustworthy predictions.


scInterpreter: Training Large Language Models to Interpret scRNA-seq Data for Cell Type Annotation

arXiv.org Artificial Intelligence

Despite the inherent limitations of existing Large Language Models in directly reading and interpreting single-cell omics data, they demonstrate significant potential and flexibility as the Foundation Model. This research focuses on how to train and adapt the Large Language Model with the capability to interpret and distinguish cell types in single-cell RNA sequencing data. Our preliminary research results indicate that these foundational models excel in accurately categorizing known cell types, demonstrating the potential of the Large Language Models as effective tools for uncovering new biological insights.


Unveiling Delay Effects in Traffic Forecasting: A Perspective from Spatial-Temporal Delay Differential Equations

arXiv.org Artificial Intelligence

Traffic flow forecasting is a fundamental research issue for transportation planning and management, which serves as a canonical and typical example of spatial-temporal predictions. In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting. Yet, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed. The change of traffic flow at one node will take several minutes, i.e., time delay, to influence its connected neighbors. 2) Traffic conditions undergo continuous changes. The prediction frequency for traffic flow forecasting may vary based on specific scenario requirements. Most existing discretized models require retraining for each prediction horizon, restricting their applicability. To tackle the above issues, we propose a neural Spatial-Temporal Delay Differential Equation model, namely STDDE. It includes both delay effects and continuity into a unified delay differential equation framework, which explicitly models the time delay in spatial information propagation. Furthermore, theoretical proofs are provided to show its stability. Then we design a learnable traffic-graph time-delay estimator, which utilizes the continuity of the hidden states to achieve the gradient backward process. Finally, we propose a continuous output module, allowing us to accurately predict traffic flow at various frequencies, which provides more flexibility and adaptability to different scenarios. Extensive experiments show the superiority of the proposed STDDE along with competitive computational efficiency.


Temporal Inductive Path Neural Network for Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph (KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial task that aims to predict future facts based on historical occurrences. The key challenge lies in uncovering structural dependencies within historical subgraphs and temporal patterns. Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation. However, the real-world scenario often involves an extensive number of entities, with new entities emerging over time. This makes it challenging for entity-dependent methods to cope with extensive volumes of entities, and effectively handling newly emerging entities also becomes a significant challenge. Therefore, we propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective. Specifically, TiPNN adopts a unified graph, namely history temporal graph, to comprehensively capture and encapsulate information from history. Subsequently, we utilize the defined query-aware temporal paths on a history temporal graph to model historical path information related to queries for reasoning. Extensive experiments illustrate that the proposed model not only attains significant performance enhancements but also handles inductive settings, while additionally facilitating the provision of reasoning evidence through history temporal graphs.


Text2MDT: Extracting Medical Decision Trees from Medical Texts

arXiv.org Artificial Intelligence

Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to build clinical decision support systems. However, the current MDT construction methods rely heavily on time-consuming and laborious manual annotation. In this work, we propose a novel task, Text2MDT, to explore the automatic extraction of MDTs from medical texts such as medical guidelines and textbooks. We normalize the form of the MDT and create an annotated Text-to-MDT dataset in Chinese with the participation of medical experts. We investigate two different methods for the Text2MDT tasks: (a) an end-to-end framework which only relies on a GPT style large language models (LLM) instruction tuning to generate all the node information and tree structures. (b) The pipeline framework which decomposes the Text2MDT task to three subtasks. Experiments on our Text2MDT dataset demonstrate that: (a) the end-to-end method basd on LLMs (7B parameters or larger) show promising results, and successfully outperform the pipeline methods. (b) The chain-of-thought (COT) prompting method \cite{Wei2022ChainOT} can improve the performance of the fine-tuned LLMs on the Text2MDT test set. (c) the lightweight pipelined method based on encoder-based pretrained models can perform comparably with LLMs with model complexity two magnititudes smaller. Our Text2MDT dataset is open-sourced at \url{https://tianchi.aliyun.com/dataset/95414}, and the source codes are open-sourced at \url{https://github.com/michael-wzhu/text2dt}.