Not enough data to create a plot.
Try a different view from the menu above.
Wang, Nan
Jina CLIP: Your CLIP Model Is Also Your Text Retriever
Koukounas, Andreas, Mastrapas, Georgios, Günther, Michael, Wang, Bo, Martens, Scott, Mohr, Isabelle, Sturua, Saba, Akram, Mohammad Kalim, Martínez, Joan Fontanals, Ognawala, Saahil, Guzman, Susana, Werk, Maximilian, Wang, Nan, Xiao, Han
Contrastive Language-Image Pretraining (CLIP) is widely used to train models to align images and texts in a common embedding space by mapping them to fixed-sized vectors. These models are key to multimodal information retrieval and related tasks. However, CLIP models generally underperform in text-only tasks compared to specialized text models. This creates inefficiencies for information retrieval systems that keep separate embeddings and models for text-only and multimodal tasks. We propose a novel, multi-task contrastive training method to address this issue, which we use to train the jina-clip-v1 model to achieve the state-of-the-art performance on both text-image and text-text retrieval tasks.
Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models
Liu, Qi, Wang, Bo, Wang, Nan, Mao, Jiaxin
Recent studies have demonstrated the effectiveness of using large language language models (LLMs) in passage ranking. The listwise approaches, such as RankGPT, have become new state-of-the-art in this task. However, the efficiency of RankGPT models is limited by the maximum context length and relatively high latency of LLM inference. To address these issues, in this paper, we propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking. By treating each passage as a special token, we can directly input passage embeddings into LLMs, thereby reducing input length. Additionally, we introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process. For adapting the model to reranking, we employ listwise learning to rank loss for training. Evaluation results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness. {The Code is available at \url{https://github.com/liuqi6777/pe_rank}.}
Motion Planning for Hybrid Dynamical Systems: Framework, Algorithm Template, and a Sampling-based Approach
Wang, Nan, Sanfelice, Ricardo G.
This paper focuses on the motion planning problem for the systems exhibiting both continuous and discrete behaviors, which we refer to as hybrid dynamical systems. Firstly, the motion planning problem for hybrid systems is formulated using the hybrid equation framework, which is general to capture most hybrid systems. Secondly, a propagation algorithm template is proposed that describes a general framework to solve the motion planning problem for hybrid systems. Thirdly, a rapidly-exploring random trees (RRT) implementation of the proposed algorithm template is designed to solve the motion planning problem for hybrid systems. At each iteration, the proposed algorithm, called HyRRT, randomly picks a state sample and extends the search tree by flow or jump, which is also chosen randomly when both regimes are possible. Through a definition of concatenation of functions defined on hybrid time domains, we show that HyRRT is probabilistically complete, namely, the probability of failing to find a motion plan approaches zero as the number of iterations of the algorithm increases. This property is guaranteed under mild conditions on the data defining the motion plan, which include a relaxation of the usual positive clearance assumption imposed in the literature of classical systems. The motion plan is computed through the solution of two optimization problems, one associated with the flow and the other with the jumps of the system. The proposed algorithm is applied to an actuated bouncing ball system and a walking robot system so as to highlight its generality and computational features.
HyRRT-Connect: A Bidirectional Rapidly-Exploring Random Trees Motion Planning Algorithm for Hybrid Systems
Wang, Nan, Sanfelice, Ricardo G.
This paper proposes a bidirectional rapidly-exploring random trees (RRT) algorithm to solve the motion planning problem for hybrid systems. The proposed algorithm, called HyRRT-Connect, propagates in both forward and backward directions in hybrid time until an overlap between the forward and backward propagation results is detected. Then, HyRRT-Connect constructs a motion plan through the reversal and concatenation of functions defined on hybrid time domains, ensuring the motion plan thoroughly satisfies the given hybrid dynamics. To address the potential discontinuity along the flow caused by tolerating some distance between the forward and backward partial motion plans, we reconstruct the backward partial motion plan by a forward-in-hybrid-time simulation from the final state of the forward partial motion plan. By applying the reversed input of the backward partial motion plan, the reconstruction process effectively eliminates the discontinuity and ensures that as the tolerance distance decreases to zero, the distance between the endpoint of the reconstructed motion plan and the final state set approaches zero. The proposed algorithm is applied to an actuated bouncing ball example and a walking robot example so as to highlight its generality and computational improvement.
Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings
Mohr, Isabelle, Krimmel, Markus, Sturua, Saba, Akram, Mohammad Kalim, Koukounas, Andreas, Günther, Michael, Mastrapas, Georgios, Ravishankar, Vinit, Martínez, Joan Fontanals, Wang, Feng, Liu, Qi, Yu, Ziniu, Fu, Jie, Ognawala, Saahil, Guzman, Susana, Wang, Bo, Werk, Maximilian, Wang, Nan, Xiao, Han
We introduce a novel suite of state-of-the-art bilingual text embedding models that are designed to support English and another target language. These models are capable of processing lengthy text inputs with up to 8192 tokens, making them highly versatile for a range of natural language processing tasks such as text retrieval, clustering, and semantic textual similarity (STS) calculations. By focusing on bilingual models and introducing a unique multi-task learning objective, we have significantly improved the model performance on STS tasks, which outperforms the capabilities of existing multilingual models in both target language understanding and cross-lingual evaluation tasks. Moreover, our bilingual models are more efficient, requiring fewer parameters and less memory due to their smaller vocabulary needs. Furthermore, we have expanded the Massive Text Embedding Benchmark (MTEB) to include benchmarks for German and Spanish embedding models. This integration aims to stimulate further research and advancement in text embedding technologies for these languages.
Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents
Günther, Michael, Ong, Jackmin, Mohr, Isabelle, Abdessalem, Alaeddine, Abel, Tanguy, Akram, Mohammad Kalim, Guzman, Susana, Mastrapas, Georgios, Sturua, Saba, Wang, Bo, Werk, Maximilian, Wang, Nan, Xiao, Han
Text embedding models have emerged as powerful tools for transforming sentences into fixed-sized feature vectors that encapsulate semantic information. While these models are essential for tasks like information retrieval, semantic clustering, and text re-ranking, most existing open-source models, especially those built on architectures like BERT, struggle to represent lengthy documents and often resort to truncation. One common approach to mitigate this challenge involves splitting documents into smaller paragraphs for embedding. However, this strategy results in a much larger set of vectors, consequently leading to increased memory consumption and computationally intensive vector searches with elevated latency. To address these challenges, we introduce Jina Embeddings 2, an open-source text embedding model capable of accommodating up to 8192 tokens. This model is designed to transcend the conventional 512-token limit and adeptly process long documents. Jina Embeddings 2 not only achieves state-of-the-art performance on a range of embedding-related tasks in the MTEB benchmark but also matches the performance of OpenAI's proprietary ada-002 model. Additionally, our experiments indicate that an extended context can enhance performance in tasks such as NarrativeQA.
Deep Learning with Information Fusion and Model Interpretation for Health Monitoring of Fetus based on Long-term Prenatal Electronic Fetal Heart Rate Monitoring Data
Lin, Zenghui, Liu, Xintong, Wang, Nan, Li, Ruichen, Liu, Qingao, Ma, Jingying, Wang, Liwei, Wang, Yan, Hong, Shenda
Long-term fetal heart rate (FHR) monitoring during the antepartum period, increasingly popularized by electronic FHR monitoring, represents a growing approach in FHR monitoring. This kind of continuous monitoring, in contrast to the short-term one, collects an extended period of fetal heart data. This offers a more comprehensive understanding of fetus's conditions. However, the interpretation of long-term antenatal fetal heart monitoring is still in its early stages, lacking corresponding clinical standards. Furthermore, the substantial amount of data generated by continuous monitoring imposes a significant burden on clinical work when analyzed manually. To address above challenges, this study develops an automatic analysis system named LARA (Long-term Antepartum Risk Analysis system) for continuous FHR monitoring, combining deep learning and information fusion methods. LARA's core is a well-established convolutional neural network (CNN) model. It processes long-term FHR data as input and generates a Risk Distribution Map (RDM) and Risk Index (RI) as the analysis results. We evaluate LARA on inner test dataset, the performance metrics are as follows: AUC 0.872, accuracy 0.816, specificity 0.811, sensitivity 0.806, precision 0.271, and F1 score 0.415. In our study, we observe that long-term FHR monitoring data with higher RI is more likely to result in adverse outcomes (p=0.0021). In conclusion, this study introduces LARA, the first automated analysis system for long-term FHR monitoring, initiating the further explorations into its clinical value in the future.
RD-VIO: Robust Visual-Inertial Odometry for Mobile Augmented Reality in Dynamic Environments
Li, Jinyu, Pan, Xiaokun, Huang, Gan, Zhang, Ziyang, Wang, Nan, Bao, Hujun, Zhang, Guofeng
It is typically challenging for visual or visual-inertial odometry systems to handle the problems of dynamic scenes and pure rotation. In this work, we design a novel visual-inertial odometry (VIO) system called RD-VIO to handle both of these two problems. Firstly, we propose an IMU-PARSAC algorithm which can robustly detect and match keypoints in a two-stage process. In the first state, landmarks are matched with new keypoints using visual and IMU measurements. We collect statistical information from the matching and then guide the intra-keypoint matching in the second stage. Secondly, to handle the problem of pure rotation, we detect the motion type and adapt the deferred-triangulation technique during the data-association process. We make the pure-rotational frames into the special subframes. When solving the visual-inertial bundle adjustment, they provide additional constraints to the pure-rotational motion. We evaluate the proposed VIO system on public datasets. Experiments show the proposed RD-VIO has obvious advantages over other methods in dynamic environments.
Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs
Ding, Pengfei, Wang, Yan, Liu, Guanfeng, Wang, Nan
Heterogeneous graph few-shot learning (HGFL) has been developed to address the label sparsity issue in heterogeneous graphs (HGs), which consist of various types of nodes and edges. The core concept of HGFL is to extract knowledge from rich-labeled classes in a source HG, transfer this knowledge to a target HG to facilitate learning new classes with few-labeled training data, and finally make predictions on unlabeled testing data. Existing methods typically assume that the source HG, training data, and testing data all share the same distribution. However, in practice, distribution shifts among these three types of data are inevitable due to two reasons: (1) the limited availability of the source HG that matches the target HG distribution, and (2) the unpredictable data generation mechanism of the target HG. Such distribution shifts result in ineffective knowledge transfer and poor learning performance in existing methods, thereby leading to a novel problem of out-of-distribution (OOD) generalization in HGFL. To address this challenging problem, we propose a novel Causal OOD Heterogeneous graph Few-shot learning model, namely COHF. In COHF, we first characterize distribution shifts in HGs with a structural causal model, establishing an invariance principle for OOD generalization in HGFL. Then, following this invariance principle, we propose a new variational autoencoder-based heterogeneous graph neural network to mitigate the impact of distribution shifts. Finally, by integrating this network with a novel meta-learning framework, COHF effectively transfers knowledge to the target HG to predict new classes with few-labeled data. Extensive experiments on seven real-world datasets have demonstrated the superior performance of COHF over the state-of-the-art methods.
Revisiting Graph-based Fraud Detection in Sight of Heterophily and Spectrum
Xu, Fan, Wang, Nan, Wu, Hao, Wen, Xuezhi, Zhao, Xibin
Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task. In recent years, Graph Neural Networks(GNN) have been widely applied to GFD, characterizing the anomalous possibility of a node by aggregating neighbor information. However, fraud graphs are inherently heterophilic, thus most of GNNs perform poorly due to their assumption of homophily. In addition, due to the existence of heterophily and class imbalance problem, the existing models do not fully utilize the precious node label information. To address the above issues, this paper proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector includes a hybrid filtering module and a local environmental constraint module, the two modules are utilized to solve heterophily and label utilization problem respectively. The first module starts from the perspective of the spectral domain, and solves the heterophily problem to a certain extent. Specifically, it divides the spectrum into multiple mixed frequency bands according to the correlation between spectrum energy distribution and heterophily. Then in order to make full use of the node label information, a local environmental constraint module is adaptively designed. The comprehensive experimental results on four real-world fraud detection datasets show that SEC-GFD outperforms other competitive graph-based fraud detectors.