Wang, Michael Yu
CompdVision: Combining Near-Field 3D Visual and Tactile Sensing Using a Compact Compound-Eye Imaging System
Luo, Lifan, Zhang, Boyang, Peng, Zhijie, Cheung, Yik Kin, Zhang, Guanlan, Li, Zhigang, Wang, Michael Yu, Yu, Hongyu
As automation technologies advance, the need for compact and multi-modal sensors in robotic applications is growing. To address this demand, we introduce CompdVision, a novel sensor that combines near-field 3D visual and tactile sensing. This sensor, with dimensions of 22$\times$14$\times$14 mm, leverages the compound eye imaging system to achieve a compact form factor without compromising its dual modalities. CompdVision utilizes two types of vision units to meet diverse sensing requirements. Stereo units with far-focus lenses can see through the transparent elastomer, facilitating depth estimation beyond the contact surface, while tactile units with near-focus lenses track the movement of markers embedded in the elastomer to obtain contact deformation. Experimental results validate the sensor's superior performance in 3D visual and tactile sensing. The sensor demonstrates effective depth estimation within a 70mm range from its surface. Additionally, it registers high accuracy in tangential and normal force measurements. The dual modalities and compact design make the sensor a versatile tool for complex robotic tasks.
Motion Planning for Multiple Mobile Manipulator System in Complex Flipping Manipulation
Liu, Wenhang, Song, Kun, Ren, Meng, Hu, Jiawei, Wang, Michael Yu, Xiong, Zhenhua
Multiple robot systems are favored for object manipulation and transportation, especially for large objects. However, in more complex manipulation such as flipping, these systems encounter a new challenge, configuration disconnectivity of manipulators. Grasping objects by manipulators will impose closed-chain constraints on the system, which in turn limits the feasible motions of manipulators and further compromises the configuration connectivity. Multiple mobile manipulator systems show much more flexibility in object manipulation with the mobility of the mobile platform and have the potential to address the above problem. In this paper, a novel planning framework is proposed for complex flipping manipulation by incorporating platform motions and regrasping. Firstly, two types of trajectories, mobile manipulator planning and regrasping planning, are classified and can be assigned different priorities for different tasks. Secondly, corresponding planning methods are designed for each type of trajectory. Specifically, in mobile manipulator planning, the configuration of the platform is determined through optimization to ensure connectivity when the manipulator approaches configuration boundaries. In regrasping planning, closed-chain constraints are temporarily disregarded and the manipulation capabilities are prioritized to facilitate subsequent planning. Finally, the structure of the overall planning framework is provided. Experimental results demonstrate that the proposed planner efficiently plans the motions of the system to accomplish flipping manipulation. Additionally, a comprehensive experiment emphasizes the significance of our planner in extending the capabilities of multiple mobile manipulator systems in complex tasks.
Origami-inspired Bi-directional Actuator with Orthogonal Actuation
Liu, Shuai, Athar, Sheeraz, Wang, Michael Yu
Origami offers a promising alternative for designing innovative soft robotic actuators. While features of origami, such as bi-directional motion and structural anisotropy, haven't been extensively explored in the past, this letter presents a novel design inspired by origami tubes for a bi-directional actuator. This actuator is capable of moving in two orthogonal directions and has separate channels throughout its body to control each movement. We introduce a bottom-up design methodology that can also be adapted for other complex movements. The actuator was manufactured using popular 3D printing techniques. To enhance its durability, we experimented with different 3D printing technologies and materials. The actuator's strength was further improved using silicon spin coating, and we compared the performance of coated, uncoated, and silicon-only specimens. The material model was empirically derived by testing specimens on a universal testing machine (UTM). Lastly, we suggest potential applications for these actuators, such as in quadruped robots.
Real-Time Parallel Trajectory Optimization with Spatiotemporal Safety Constraints for Autonomous Driving in Congested Traffic
Zheng, Lei, Yang, Rui, Peng, Zengqi, Liu, Haichao, Wang, Michael Yu, Ma, Jun
Multi-modal behaviors exhibited by surrounding vehicles (SVs) can typically lead to traffic congestion and reduce the travel efficiency of autonomous vehicles (AVs) in dense traffic. This paper proposes a real-time parallel trajectory optimization method for the AV to achieve high travel efficiency in dynamic and congested environments. A spatiotemporal safety module is developed to facilitate the safe interaction between the AV and SVs in the presence of trajectory prediction errors resulting from the multi-modal behaviors of the SVs. By leveraging multiple shooting and constraint transcription, we transform the trajectory optimization problem into a nonlinear programming problem, which allows for the use of optimization solvers and parallel computing techniques to generate multiple feasible trajectories in parallel. Subsequently, these spatiotemporal trajectories are fed into a multi-objective evaluation module considering both safety and efficiency objectives, such that the optimal feasible trajectory corresponding to the optimal target lane can be selected. The proposed framework is validated through simulations in a dense and congested driving scenario with multiple uncertain SVs. The results demonstrate that our method enables the AV to safely navigate through a dense and congested traffic scenario while achieving high travel efficiency and task accuracy in real time.
Spatiotemporal Receding Horizon Control with Proactive Interaction Towards Safe and Efficient Autonomous Driving in Dense Traffic
Zheng, Lei, Yang, Rui, Peng, Zengqi, Wang, Michael Yu, Ma, Jun
In dense traffic scenarios, ensuring safety while keeping high task performance for autonomous driving is a critical challenge. To address this problem, this paper proposes a computationally-efficient spatiotemporal receding horizon control (ST-RHC) scheme to generate a safe, dynamically feasible, energy-efficient trajectory in control space, where different driving tasks in dense traffic can be achieved with high accuracy and safety in real time. In particular, an embodied spatiotemporal safety barrier module considering proactive interactions is devised to mitigate the effects of inaccuracies resulting from the trajectory prediction of other vehicles. Subsequently, the motion planning and control problem is formulated as a constrained nonlinear optimization problem, which favorably facilitates the effective use of off-the-shelf optimization solvers in conjunction with multiple shooting. The effectiveness of the proposed ST-RHC scheme is demonstrated through comprehensive comparisons with state-of-the-art algorithms on synthetic and real-world traffic datasets under dense traffic, and the attendant outcome of superior performance in terms of accuracy, efficiency and safety is achieved.
Learn to Grasp via Intention Discovery and its Application to Challenging Clutter
Zhao, Chao, Jiang, Chunli, Cai, Junhao, Yu, Hongyu, Wang, Michael Yu, Chen, Qifeng
Humans excel in grasping objects through diverse and robust policies, many of which are so probabilistically rare that exploration-based learning methods hardly observe and learn. Inspired by the human learning process, we propose a method to extract and exploit latent intents from demonstrations, and then learn diverse and robust grasping policies through self-exploration. The resulting policy can grasp challenging objects in various environments with an off-the-shelf parallel gripper. The key component is a learned intention estimator, which maps gripper pose and visual sensory to a set of sub-intents covering important phases of the grasping movement. Sub-intents can be used to build an intrinsic reward to guide policy learning. The learned policy demonstrates remarkable zero-shot generalization from simulation to the real world while retaining its robustness against states that have never been encountered during training, novel objects such as protractors and user manuals, and environments such as the cluttered conveyor.
ERRA: An Embodied Representation and Reasoning Architecture for Long-horizon Language-conditioned Manipulation Tasks
Zhao, Chao, Yuan, Shuai, Jiang, Chunli, Cai, Junhao, Yu, Hongyu, Wang, Michael Yu, Chen, Qifeng
This letter introduces ERRA, an embodied learning architecture that enables robots to jointly obtain three fundamental capabilities (reasoning, planning, and interaction) for solving long-horizon language-conditioned manipulation tasks. ERRA is based on tightly-coupled probabilistic inferences at two granularity levels. Coarse-resolution inference is formulated as sequence generation through a large language model, which infers action language from natural language instruction and environment state. The robot then zooms to the fine-resolution inference part to perform the concrete action corresponding to the action language. Fine-resolution inference is constructed as a Markov decision process, which takes action language and environmental sensing as observations and outputs the action. The results of action execution in environments provide feedback for subsequent coarse-resolution reasoning. Such coarse-to-fine inference allows the robot to decompose and achieve long-horizon tasks interactively. In extensive experiments, we show that ERRA can complete various long-horizon manipulation tasks specified by abstract language instructions. We also demonstrate successful generalization to the novel but similar natural language instructions.
Flipbot: Learning Continuous Paper Flipping via Coarse-to-Fine Exteroceptive-Proprioceptive Exploration
Zhao, Chao, Jiang, Chunli, Cai, Junhao, Wang, Michael Yu, Yu, Hongyu, Chen, Qifeng
This paper tackles the task of singulating and grasping paper-like deformable objects. We refer to such tasks as paper-flipping. In contrast to manipulating deformable objects that lack compression strength (such as shirts and ropes), minor variations in the physical properties of the paper-like deformable objects significantly impact the results, making manipulation highly challenging. Here, we present Flipbot, a novel solution for flipping paper-like deformable objects. Flipbot allows the robot to capture object physical properties by integrating exteroceptive and proprioceptive perceptions that are indispensable for manipulating deformable objects. Furthermore, by incorporating a proposed coarse-to-fine exploration process, the system is capable of learning the optimal control parameters for effective paper-flipping through proprioceptive and exteroceptive inputs. We deploy our method on a real-world robot with a soft gripper and learn in a self-supervised manner. The resulting policy demonstrates the effectiveness of Flipbot on paper-flipping tasks with various settings beyond the reach of prior studies, including but not limited to flipping pages throughout a book and emptying paper sheets in a box.
Viko 2.0: A Hierarchical Gecko-inspired Adhesive Gripper with Visuotactile Sensor
Pang, Chohei, Wang, Qicheng, Mak, Kinwing, Yu, Hongyu, Wang, Michael Yu
Robotic grippers with visuotactile sensors have access to rich tactile information for grasping tasks but encounter difficulty in partially encompassing large objects with sufficient grip force. While hierarchical gecko-inspired adhesives are a potential technique for bridging performance gaps, they require a large contact area for efficient usage. In this work, we present a new version of an adaptive gecko gripper called Viko 2.0 that effectively combines the advantage of adhesives and visuotactile sensors. Compared with a non-hierarchical structure, a hierarchical structure with a multimaterial design achieves approximately a 1.5 times increase in normal adhesion and double in contact area. The integrated visuotactile sensor captures a deformation image of the hierarchical structure and provides a real-time measurement of contact area, shear force, and incipient slip detection at 24 Hz. The gripper is implemented on a robotic arm to demonstrate an adaptive grasping pose based on contact area, and grasps objects with a wide range of geometries and textures.