Goto

Collaborating Authors

 Wang, Mengdi


Accelerating Stochastic Composition Optimization

Neural Information Processing Systems

Consider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic first-order method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method, which updates based on queries to the sampling oracle using two different timescales. The ASC-PG is the first proximal gradient method for the stochastic composition problem that can deal with nonsmooth regularization penalty. We show that the ASC-PG exhibits faster convergence than the best known algorithms, and that it achieves the optimal sample-error complexity in several important special cases. We further demonstrate the application of ASC-PG to reinforcement learning and conduct numerical experiments.


Stochastic Primal-Dual Methods and Sample Complexity of Reinforcement Learning

arXiv.org Machine Learning

We study the online estimation of the optimal policy of a Markov decision process (MDP). We propose a class of Stochastic Primal-Dual (SPD) methods which exploit the inherent minimax duality of Bellman equations. The SPD methods update a few coordinates of the value and policy estimates as a new state transition is observed. These methods use small storage and has low computational complexity per iteration. The SPD methods find an absolute-$\epsilon$-optimal policy, with high probability, using $\mathcal{O}\left(\frac{|\mathcal{S}|^4 |\mathcal{A}|^2\sigma^2 }{(1-\gamma)^6\epsilon^2} \right)$ iterations/samples for the infinite-horizon discounted-reward MDP and $\mathcal{O}\left(\frac{|\mathcal{S}|^4 |\mathcal{A}|^2H^6\sigma^2 }{\epsilon^2} \right)$ for the finite-horizon MDP.


Accelerating Stochastic Composition Optimization

arXiv.org Machine Learning

Consider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic first-order method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method, which updates based on queries to the sampling oracle using two different timescales. The ASC-PG is the first proximal gradient method for the stochastic composition problem that can deal with nonsmooth regularization penalty. We show that the ASC-PG exhibits faster convergence than the best known algorithms, and that it achieves the optimal sample-error complexity in several important special cases. We further demonstrate the application of ASC-PG to reinforcement learning and conduct numerical experiments.


Random Multi-Constraint Projection: Stochastic Gradient Methods for Convex Optimization with Many Constraints

arXiv.org Machine Learning

Consider convex optimization problems subject to a large number of constraints. We focus on stochastic problems in which the objective takes the form of expected values and the feasible set is the intersection of a large number of convex sets. We propose a class of algorithms that perform both stochastic gradient descent and random feasibility updates simultaneously. At every iteration, the algorithms sample a number of projection points onto a randomly selected small subsets of all constraints. Three feasibility update schemes are considered: averaging over random projected points, projecting onto the most distant sample, projecting onto a special polyhedral set constructed based on sample points. We prove the almost sure convergence of these algorithms, and analyze the iterates' feasibility error and optimality error, respectively. We provide new convergence rate benchmarks for stochastic first-order optimization with many constraints. The rate analysis and numerical experiments reveal that the algorithm using the polyhedral-set projection scheme is the most efficient one within known algorithms.


Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions

arXiv.org Machine Learning

Classical stochastic gradient methods are well suited for minimizing expected-value objective functions. However, they do not apply to the minimization of a nonlinear function involving expected values or a composition of two expected-value functions, i.e., problems of the form $\min_x \mathbf{E}_v [f_v\big(\mathbf{E}_w [g_w(x)]\big)]$. In order to solve this stochastic composition problem, we propose a class of stochastic compositional gradient descent (SCGD) algorithms that can be viewed as stochastic versions of quasi-gradient method. SCGD update the solutions based on noisy sample gradients of $f_v,g_{w}$ and use an auxiliary variable to track the unknown quantity $\mathbf{E}_w[g_w(x)]$. We prove that the SCGD converge almost surely to an optimal solution for convex optimization problems, as long as such a solution exists. The convergence involves the interplay of two iterations with different time scales. For nonsmooth convex problems, the SCGD achieve a convergence rate of $O(k^{-1/4})$ in the general case and $O(k^{-2/3})$ in the strongly convex case, after taking $k$ samples. For smooth convex problems, the SCGD can be accelerated to converge at a rate of $O(k^{-2/7})$ in the general case and $O(k^{-4/5})$ in the strongly convex case. For nonconvex problems, we prove that any limit point generated by SCGD is a stationary point, for which we also provide the convergence rate analysis. Indeed, the stochastic setting where one wants to optimize compositions of expected-value functions is very common in practice. The proposed SCGD methods find wide applications in learning, estimation, dynamic programming, etc.