Goto

Collaborating Authors

 Wang, Ling


Enhancing the Robustness of QMIX against State-adversarial Attacks

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) performance is generally impacted by state-adversarial attacks, a perturbation applied to an agent's observation. Most recent research has concentrated on robust single-agent reinforcement learning (SARL) algorithms against state-adversarial attacks. Still, there has yet to be much work on robust multi-agent reinforcement learning. Using QMIX, one of the popular cooperative multi-agent reinforcement algorithms, as an example, we discuss four techniques to improve the robustness of SARL algorithms and extend them to multi-agent scenarios. To increase the robustness of multi-agent reinforcement learning (MARL) algorithms, we train models using a variety of attacks in this research. We then test the models taught using the other attacks by subjecting them to the corresponding attacks throughout the training phase. In this way, we organize and summarize techniques for enhancing robustness when used with MARL.


Learning to Branch in Combinatorial Optimization with Graph Pointer Networks

arXiv.org Artificial Intelligence

Branch-and-bound is a typical way to solve combinatorial optimization problems. This paper proposes a graph pointer network model for learning the variable selection policy in the branch-and-bound. We extract the graph features, global features and historical features to represent the solver state. The proposed model, which combines the graph neural network and the pointer mechanism, can effectively map from the solver state to the branching variable decisions. The model is trained to imitate the classic strong branching expert rule by a designed top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. Our approach also outperforms the state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances.


MetaModulation: Learning Variational Feature Hierarchies for Few-Shot Learning with Fewer Tasks

arXiv.org Artificial Intelligence

Meta-learning algorithms are able to learn a new task using previously learned knowledge, but they often require a large number of meta-training tasks which may not be readily available. To address this issue, we propose a method for few-shot learning with fewer tasks, which we call MetaModulation. The key idea is to use a neural network to increase the density of the meta-training tasks by modulating batch normalization parameters during meta-training. Additionally, we modify parameters at various network levels, rather than just a single layer, to increase task diversity. To account for the uncertainty caused by the limited training tasks, we propose a variational MetaModulation where the modulation parameters are treated as latent variables. We also introduce learning variational feature hierarchies by the variational MetaModulation, which modulates features at all layers and can consider task uncertainty and generate more diverse tasks. The ablation studies illustrate the advantages of utilizing a learnable task modulation at different levels and demonstrate the benefit of incorporating probabilistic variants in few-task meta-learning. Our MetaModulation and its variational variants consistently outperform state-of-the-art alternatives on four few-task meta-learning benchmarks.


Explainable Artificial Intelligence for Pharmacovigilance: What Features Are Important When Predicting Adverse Outcomes?

arXiv.org Artificial Intelligence

Explainable Artificial Intelligence (XAI) has been identified as a viable method for determining the importance of features when making predictions using Machine Learning (ML) models. In this study, we created models that take an individual's health information (e.g. their drug history and comorbidities) as inputs, and predict the probability that the individual will have an Acute Coronary Syndrome (ACS) adverse outcome. Using XAI, we quantified the contribution that specific drugs had on these ACS predictions, thus creating an XAI-based technique for pharmacovigilance monitoring, using ACS as an example of the adverse outcome to detect. Individuals aged over 65 who were supplied Musculo-skeletal system (anatomical therapeutic chemical (ATC) class M) or Cardiovascular system (ATC class C) drugs between 1993 and 2009 were identified, and their drug histories, comorbidities, and other key features were extracted from linked Western Australian datasets. Multiple ML models were trained to predict if these individuals would have an ACS related adverse outcome (i.e., death or hospitalisation with a discharge diagnosis of ACS), and a variety of ML and XAI techniques were used to calculate which features -- specifically which drugs -- led to these predictions. The drug dispensing features for rofecoxib and celecoxib were found to have a greater than zero contribution to ACS related adverse outcome predictions (on average), and it was found that ACS related adverse outcomes can be predicted with 72% accuracy. Furthermore, the XAI libraries LIME and SHAP were found to successfully identify both important and unimportant features, with SHAP slightly outperforming LIME. ML models trained on linked administrative health datasets in tandem with XAI algorithms can successfully quantify feature importance, and with further development, could potentially be used as pharmacovigilance monitoring techniques.


Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Adaptive Refined Labeling

arXiv.org Artificial Intelligence

Price movement forecasting aims at predicting the future trends of financial assets based on the current market conditions and other relevant information. Recently, machine learning(ML) methods have become increasingly popular and achieved promising results for price movement forecasting in both academia and industry. Most existing ML solutions formulate the forecasting problem as a classification(to predict the direction) or a regression(to predict the return) problem in the entire set of training data. However, due to the extremely low signal-to-noise ratio and stochastic nature of financial data, good trading opportunities are extremely scarce. As a result, without careful selection of potentially profitable samples, such ML methods are prone to capture the patterns of noises instead of real signals. To address the above issues, we propose a novel framework-LARA(Locality-Aware Attention and Adaptive Refined Labeling), which contains the following three components: 1)Locality-aware attention automatically extracts the potentially profitable samples by attending to their label information in order to construct a more accurate classifier on these selected samples. 2)Adaptive refined labeling further iteratively refines the labels, alleviating the noise of samples. 3)Equipped with metric learning techniques, Locality-aware attention enjoys task-specific distance metrics and distributes attention on potentially profitable samples in a more effective way. To validate our method, we conduct comprehensive experiments on three real-world financial markets: ETFs, the China's A-share stock market, and the cryptocurrency market. LARA achieves superior performance compared with the time-series analysis methods and a set of machine learning based competitors on the Qlib platform. Extensive ablation studies and experiments demonstrate that LARA indeed captures more reliable trading opportunities.


LAI Estimation of Cucumber Crop Based on Improved Fully Convolutional Network

arXiv.org Artificial Intelligence

LAI (Leaf Area Index) is of great importance for crop yield estimation in agronomy. It is directly related to plant growth status, net assimilation rate, plant photosynthesis, and carbon dioxide in the environment. How to measure LAI accurately and efficiently is the key to the crop yield estimation problem. Manual measurement consumes a lot of human resources and material resources. Remote sensing technology is not suitable for near-Earth LAI measurement. Besides, methods based on traditional digital image processing are greatly affected by environmental noise and image exposure. Nowadays, deep learning is widely used in many fields. The improved FCN (Fully Convolutional Network) is proposed in our study for LAI measure task. Eighty-two cucumber images collected from our greenhouse are labeled to fine-tuning the pre-trained model. The result shows that the improved FCN model performs well on our dataset. Our method's mean IoU can reach 0.908, which is 11% better than conventional methods and 4.7% better than the basic FCN model.


Progressive Defense Against Adversarial Attacks for Deep Learning as a Service in Internet of Things

arXiv.org Artificial Intelligence

Nowadays, Deep Learning as a service can be deployed in Internet of Things (IoT) to provide smart services and sensor data processing. However, recent research has revealed that some Deep Neural Networks (DNN) can be easily misled by adding relatively small but adversarial perturbations to the input (e.g., pixel mutation in input images). One challenge in defending DNN against these attacks is to efficiently identifying and filtering out the adversarial pixels. The state-of-the-art defense strategies with good robustness often require additional model training for specific attacks. To reduce the computational cost without loss of generality, we present a defense strategy called a progressive defense against adversarial attacks (PDAAA) for efficiently and effectively filtering out the adversarial pixel mutations, which could mislead the neural network towards erroneous outputs, without a-priori knowledge about the attack type. We evaluated our progressive defense strategy against various attack methods on two well-known datasets. The result shows it outperforms the state-of-the-art while reducing the cost of model training by 50% on average.


Sample-Efficient Policy Learning based on Completely Behavior Cloning

arXiv.org Artificial Intelligence

Sample-E fficient Policy Learning based on Completely Behavior Cloning Qiming Zou a,, Ling Wang a,, Ke Lu b,, Y u Li b, a Department of Computer Science and T echnology, Harbin Institute of T echnology, China b Department of Management Science and Engineering, Anhui University of T echnology, ChinaAbstract Direct policy search is one of the most important algorithm of reinforcement learning. However, learning from scratch needs a large amount of experience data and can be easily prone to poor local optima. In addition to that, a partially trained policy tends to perform dangerous action to agent and environment. In order to overcome these challenges, this paper proposed a policy initialization algorithm called Policy Learning based on Completely Behavior Cloning (PLCBC). PLCBC first transforms the Model Predictive Control (MPC) controller into a piecewise a ffine (PW A) function using multi-parametric programming, and uses a neural network to express this function. By this way, PLCBC can completely clone the MPC controller without any performance loss, and is totally training-free. The experiments show that this initialization strategy can help agent learn at the high reward state region, and converge faster and better. Keywords: Deep Reinforcement Learning, Model Predictive Control, Sample E fficiency 1. Introduction Deep reinforcement learning is becoming increasingly popular for tackling challenging sequential decision making problems, and has been shown to be successful in solving a range of di fficult problems, such as games [1, 2], robotic control [3] and locomotion [4, 5]. One particular appealing prospect is to use deep neural network parametrization to minimize the burden for manual policy engineering [6].


Total Variation and Euler's Elastica for Supervised Learning

arXiv.org Machine Learning

In recent years, total variation (TV) and Euler's elastica (EE) have been successfully applied to image processing tasks such as denoising and inpainting. This paper investigates how to extend TV and EE to the supervised learning settings on high dimensional data. The supervised learning problem can be formulated as an energy functional minimization under Tikhonov regularization scheme, where the energy is composed of a squared loss and a total variation smoothing (or Euler's elastica smoothing). Its solution via variational principles leads to an Euler-Lagrange PDE. However, the PDE is always high-dimensional and cannot be directly solved by common methods. Instead, radial basis functions are utilized to approximate the target function, reducing the problem to finding the linear coefficients of basis functions. We apply the proposed methods to supervised learning tasks (including binary classification, multi-class classification, and regression) on benchmark data sets. Extensive experiments have demonstrated promising results of the proposed methods.