Not enough data to create a plot.
Try a different view from the menu above.
Wang, Lin
Autoregressive GNN-ODE GRU Model for Network Dynamics
Liang, Bo, Wang, Lin, Wang, Xiaofan
Revealing the continuous dynamics on the networks is essential for understanding, predicting, and even controlling complex systems, but it is hard to learn and model the continuous network dynamics because of complex and unknown governing equations, high dimensions of complex systems, and unsatisfactory observations. Moreover, in real cases, observed time-series data are usually non-uniform and sparse, which also causes serious challenges. In this paper, we propose an Autoregressive GNN-ODE GRU Model (AGOG) to learn and capture the continuous network dynamics and realize predictions of node states at an arbitrary time in a data-driven manner. The GNN module is used to model complicated and nonlinear network dynamics. The hidden state of node states is specified by the ODE system, and the augmented ODE system is utilized to map the GNN into the continuous time domain. The hidden state is updated through GRUCell by observations. As prior knowledge, the true observations at the same timestamp are combined with the hidden states for the next prediction. We use the autoregressive model to make a one-step ahead prediction based on observation history. The prediction is achieved by solving an initial-value problem for ODE. To verify the performance of our model, we visualize the learned dynamics and test them in three tasks: interpolation reconstruction, extrapolation prediction, and regular sequences prediction. The results demonstrate that our model can capture the continuous dynamic process of complex systems accurately and make precise predictions of node states with minimal error. Our model can consistently outperform other baselines or achieve comparable performance.
UAV Assisted Data Collection for Internet of Things: A Survey
Wei, Zhiqing, Zhu, Mingyue, Zhang, Ning, Wang, Lin, Zou, Yingying, Meng, Zeyang, Wu, Huici, Feng, Zhiyong
Thanks to the advantages of flexible deployment and high mobility, unmanned aerial vehicles (UAVs) have been widely applied in the areas of disaster management, agricultural plant protection, environment monitoring and so on. With the development of UAV and sensor technologies, UAV assisted data collection for Internet of Things (IoT) has attracted increasing attentions. In this article, the scenarios and key technologies of UAV assisted data collection are comprehensively reviewed. First, we present the system model including the network model and mathematical model of UAV assisted data collection for IoT. Then, we review the key technologies including clustering of sensors, UAV data collection mode as well as joint path planning and resource allocation. Finally, the open problems are discussed from the perspectives of efficient multiple access as well as joint sensing and data collection. This article hopefully provides some guidelines and insights for researchers in the area of UAV assisted data collection for IoT.
A Learning Convolutional Neural Network Approach for Network Robustness Prediction
Lou, Yang, Wu, Ruizi, Li, Junli, Wang, Lin, Li, Xiang, Chen, Guanrong
Network robustness is critical for various societal and industrial networks again malicious attacks. In particular, connectivity robustness and controllability robustness reflect how well a networked system can maintain its connectedness and controllability against destructive attacks, which can be quantified by a sequence of values that record the remaining connectivity and controllability of the network after a sequence of node- or edge-removal attacks. Traditionally, robustness is determined by attack simulations, which are computationally very time-consuming or even practically infeasible. In this paper, an improved method for network robustness prediction is developed based on learning feature representation using convolutional neural network (LFR-CNN). In this scheme, higher-dimensional network data are compressed to lower-dimensional representations, and then passed to a CNN to perform robustness prediction. Extensive experimental studies on both synthetic and real-world networks, both directed and undirected, demonstrate that 1) the proposed LFR-CNN performs better than other two state-of-the-art prediction methods, with significantly lower prediction errors; 2) LFR-CNN is insensitive to the variation of the network size, which significantly extends its applicability; 3) although LFR-CNN needs more time to perform feature learning, it can achieve accurate prediction faster than attack simulations; 4) LFR-CNN not only can accurately predict network robustness, but also provides a good indicator for connectivity robustness, better than the classical spectral measures.
SiamEvent: Event-based Object Tracking via Edge-aware Similarity Learning with Siamese Networks
Chae, Yujeong, Wang, Lin, Yoon, Kuk-Jin
Event cameras are novel sensors that perceive the per-pixel intensity changes and output asynchronous event streams, showing lots of advantages over traditional cameras, such as high dynamic range (HDR) and no motion blur. It has been shown that events alone can be used for object tracking by motion compensation or prediction. However, existing methods assume that the target always moves and is the stand-alone object. Moreover, they fail to track the stopped non-independent moving objects on fixed scenes. In this paper, we propose a novel event-based object tracking framework, called SiamEvent, using Siamese networks via edge-aware similarity learning. Importantly, to find the part having the most similar edge structure of target, we propose to correlate the embedded events at two timestamps to compute the target edge similarity. The Siamese network enables tracking arbitrary target edge by finding the part with the highest similarity score. This extends the possibility of event-based object tracking applied not only for the independent stand-alone moving objects, but also for various settings of the camera and scenes. In addition, target edge initialization and edge detector are also proposed to prevent SiamEvent from the drifting problem. Lastly, we built an open dataset including various synthetic and real scenes to train and evaluate SiamEvent. Extensive experiments demonstrate that SiamEvent achieves up to 15% tracking performance enhancement than the baselines on the real-world scenes and more robust tracking performance in the challenging HDR and motion blur conditions.
Deconvolutional Density Network: Free-Form Conditional Density Estimation
Chen, Bing, Islam, Mazharul, Wang, Lin, Gao, Jisuo, Orchard, Jeff
Conditional density estimation is the task of estimating the probability of an event, conditioned on some inputs. A neural network can be used to compute the output distribution explicitly. For such a task, there are many ways to represent a continuous-domain distribution using the output of a neural network, but each comes with its own limitations for what distributions it can accurately render. If the family of functions is too restrictive, it will not be appropriate for many datasets. In this paper, we demonstrate the benefits of modeling free-form distributions using deconvolution. It has the advantage of being flexible, but also takes advantage of the topological smoothness offered by the deconvolution layers. We compare our method to a number of other density-estimation approaches, and show that our Deconvolutional Density Network (DDN) outperforms the competing methods on many artificial and real tasks, without committing to a restrictive parametric model.
DEFT: Distilling Entangled Factors
Wu, Jiantao, Wang, Lin, Liu, Chunxiuzi
Disentanglement is a highly desirable property of representation due to its similarity with human understanding and reasoning. However, the performance of current disentanglement approaches is still unreliable and largely depends on the hyperparameter selection. Inspired by fractional distillation in chemistry, we propose DEFT, a disentanglement framework, to raise the lower limit of disentanglement approaches based on variational autoencoder. It applies a multi-stage training strategy, including multi-group encoders with different learning rates and piecewise disentanglement pressure, to stage by stage distill entangled factors. Furthermore, we provide insight into identifying the hyperparameters according to the information thresholds. We evaluate DEFT on three variants of dSprite and SmallNORB, showing robust and high-level disentanglement scores.
Disentangling Action Sequences: Discovering Correlated Samples
Wu, Jiantao, Wang, Lin
Disentanglement is a highly desirable property of representation due to its similarity with human's understanding and reasoning. This improves interpretability, enables the performance of down-stream tasks, and enables controllable generative models. However, this domain is challenged by the abstract notion and incomplete theories to support unsupervised disentanglement learning. We demonstrate the data itself, such as the orientation of images, plays a crucial role in disentanglement and instead of the factors, and the disentangled representations align the latent variables with the action sequences. We further introduce the concept of disentangling action sequences which facilitates the description of the behaviours of the existing disentangling approaches. An analogy for this process is to discover the commonality between the things and categorizing them. Furthermore, we analyze the inductive biases on the data and find that the latent information thresholds are correlated with the significance of the actions. For the supervised and unsupervised settings, we respectively introduce two methods to measure the thresholds. We further propose a novel framework, fractional variational autoencoder (FVAE), to disentangle the action sequences with different significance step-by-step. Experimental results on dSprites and 3D Chairs show that FVAE improves the stability of disentanglement.
Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks
Wang, Lin, Yoon, Kuk-Jin
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Improving Neural Network Classifier using Gradient-based Floating Centroid Method
Islam, Mazharul, Liu, Shuangrong, Wang, Lin, Zhang, Xiaojing
Floating centroid method (FCM) offers an efficient way to solve a fixed-centroid problem for the neural network classifiers. However, evolutionary computation as its optimization method restrains the FCM to achieve satisfactory performance for different neural network structures, because of the high computational complexity and inefficiency. Traditional gradient-based methods have been extensively adopted to optimize the neural network classifiers. In this study, a gradient-based floating centroid (GDFC) method is introduced to address the fixed centroid problem for the neural network classifiers optimized by gradient-based methods. Furthermore, a new loss function for optimizing GDFC is introduced. The experimental results display that GDFC obtains promising classification performance than the comparison methods on the benchmark datasets.
Adversarial Attack on Graph Structured Data
Dai, Hanjun, Li, Hui, Tian, Tian, Huang, Xin, Wang, Lin, Zhu, Jun, Song, Le
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool the model by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. Also, variants of genetic algorithms and gradient methods are presented in the scenario where prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.